

EDUCATION AND TRAINING IN NUCLEAR DECOMMISSIONING FIELDS

YOUNG GENERATION INDUSTRIAL EXPERIENCES IN DECOMMISSIONING

INTRODUCTION

Project success

Suitably qualified staff

Point of view of an industrial company involved in decommissioning project work

Enough resources

SKILLS AND KNOWLEDGE

Performing these nuclear decommissioning activities

Engineering

To develop the scenario
To select the techniques
To design the tools required

Management

To manage the budget
To manage project progress
To supervise the labour, staff safety, radioprotection

Labour

To carry out operations as defined in the specification and programme

ILLUSTRATION THROUGH A DECOMMINISIONING PROJECT EXAMPLE

SKILLS AND KNOWLEDGE

OBJECTIVE: Equipment removal / Cell decontamination / Hot cell demolition

SKILLS AND KNOWLEDGE

PROJECT: HOT CELL DEMOLITION

Scenario development		Based on dismantling principles and experience
Nuclear safety report		Nuclear and non-nuclear risk management (contamination & radiation, criticality, fire, earthquake, handling)
Waste characterization, nuclear measurement		Nuclear engineering
Radioprotection		Radiation interaction sciences adapted to the operations on site
Tool design : remote or contact activities		Mechanical, electronic & electrical engineering
Decontamination techniques	-	Chemical engineering
Waste management	-	Based on waste management rules & experience
Demolition techniques		Civil engineering

STAFF RESOURCES

All these skills are required at different levels:

- Operators (dismantling, decontamination, waste packaging...)
- **Teleoperators**
- **Technicians on site** (maintenance, radioprotection, waste characterization, nuclear measurement...)
- Technicians (designers, operational procedures development...)
- **Engineers** (tool design, technique development, nuclear safety ...)
- Operations managers (works supervisors, works managers)
- **Senior project managers**: site managers, project directors

ACADEMIC TRAINING WITH NUCLEAR SCIENCES PROGRAMMES IN FRANCE:

PROJECT MANAGEMENT

- ENGINEERING COLLEGE: project management, sciences (mechanical, chemistry, electronic...)
- MASTER'S DEGREE
 - ✓ ITDD (technical degree) Grenoble University
 - ✓ NUCLEAR ENERGY (engineering degree) ENSPC Paris

ENGINEERING AND TECHNICAL STUDIES

- MASTER'S DEGREE
- LICENCE Dismantling-Decontamination-Abestos & Waste Nîmes: technical degree
- 2 years technical degree for design training

NUCLEAR SAFETY ENGINEERING

- ATOMIC ENGINEERING: all nuclear subjects (waste, physics, neutronics, safety, reactors...) –INSTN (engineering degree)
- ECOLE DES MINES Nantes (engineering degree): Nuclear safety & environment
- MASTER'S DEGREE :
 - ✓ ENSAM (6th year university degree) Aix en Provence
 - ✓ ITDD (technical degree) Grenoble University

ACADEMIC TRAINING WITH NUCLEAR SCIENCE PROGRAMMES IN FRANCE:

RADIOPROTECTION

- Radioprotection European Master Degree (technical degree)
- 1 or 2 year Technical degree INSTN (Institut National des Sciences et Techniques Nucléaires)

All these training programmes are directly linked to industrial companies who present their feedback

Sponsored by the french nuclear companies: CEA, AREVA, EDF, ANDRA, NUVIA...

Decommissioning issues are **not an exact science** but:

Compilation of feedback identifies successes, difficulties, failures to explain...

OPERATOR TRAINING:

- DECONTAMINATION OPERATORS
 - High school technical degree with nuclear environment programme
- **DISMANTLING OPERATORS/ TELEOPERATORS:** no specific academic training but mechanical, electrical, electronic, building capabilities

ACADEMIC TRAINING IS NOT SUFFICIENT

PRACTICE TRAINING, TIPS, FEEDBACK, RULES ARE NECESSARY

Executing operations in a nuclear environment needs specific skills which cannot be integrated without any

practical experience:

Staff safety

Correct training execution

Our answer to this lack of competences:

NUVIA Internal training and tutoring

NUVIA dismantling techniques school

MOTIVATION AND EVOLUTION

The decommissioning activities are **new activities**

Real career evolution opportunities

Vertically: from operator to manager

Transversally: from one speciality to another

In the world, **more and more facilities** will have to be dismantled in the **future** (power plants, research reactors, fuel production facilities...)

The projects are become bigger and bigger

Huge carreer opportunities

Technical challenges

Knowledge transfer challenge

CONCLUSION

Decommissioning activities offer the biggest prospects in the nuclear field.

To guarantee enough resources to perform the activities

Promote decommissioning prospects to attract future employees to suitable training programmes

Nuclear decommissioning companies must be linked to the academic programmes guaranteeing efficient and effective training.

FEEDBACK MUST BE SHARED

