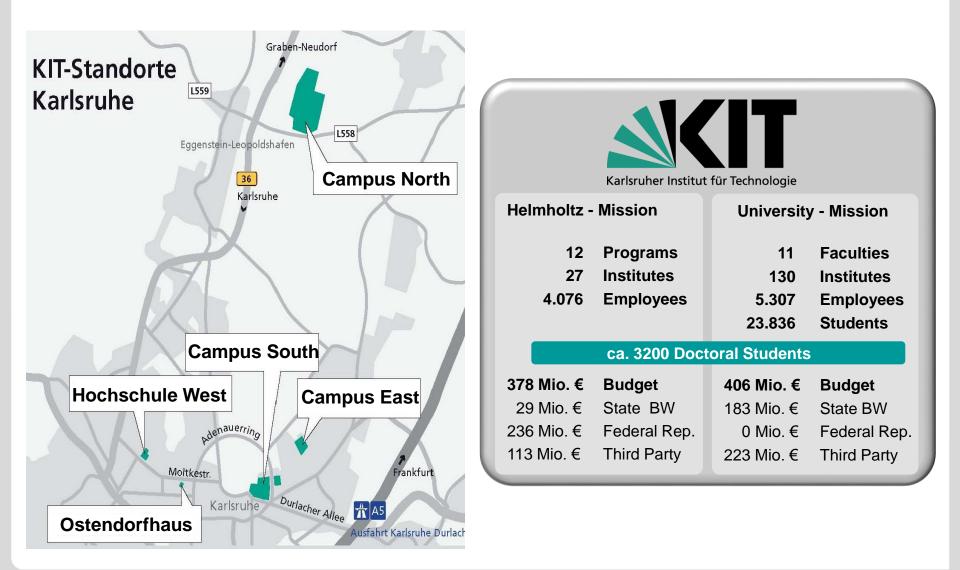


ELINDER Launch Event, Bratislava, 02/12/16

Regional Cluster in Decommissioning – a joint task

Th. Walter Tromm, Programme Nuclear Waste Management, Safety and Radiation Research



KIT – University of the State of Baden-Württemberg and National Research Center of the Helmholtz Association

www.kit.edu

KIT – Locations and Figures

2

KIT – Part of the Helmholtz Association

Helmholtz research centers

КІТ	Karlsruhe Institute of Technology			
DLR	German Aerospace Center			
FZJ	Forschungszentrum Jülich			
DESY	Deutsches Elektronen-Synchrotron			
DKFZ	German Cancer Research Center			
IPP	Max-Planck-Institute for Plasma Physics			
HMGU	Helmholtz-Zentrum München			
GSI	Helmholtz Center for Heavy Ion Research			
HZB	Helmholtz-Zentrum Berlin für Materialien			
	und Energie			
AWI	Alfred-Wegener-Institute for Polar and Marine			
	Research			
HZDR	Helmholtz Center Dresden Rossendorf			
UFZ	Helmholtz Center for Environmental Research			
GKSS	Helmholtz-Zentrum Geesthacht – Center for			
	Materials and Coastal Research			
GFZ	Helmholtz-Zentrum Potsdam – German			
	Research Center for Geosciences			
MDC	Max-Delbrück-Center for Molecular Medicine			
GEOMAR	Helmholtz Centre for Ocean Research Kiel			
HZI	Helmholtz Center for Infection Research			
DZNE	German Center for Neurodegenerative Diseases			

Foundation of the Decommissioning Cluster, 02/2016

DHBW Karlsruhe

Universität Stuttgart

IKE and MPA University of Stuttgart

KIT Center for Decommissioning

EUROPEAN COMMISSION

Joint Research Center

4

PAUL SCHERRER INSTITUT

PSI Switzerland

Strategic objectives of the decommissioning cluster (1/2)

Coordination and bundling of activities:

in research, teaching and training

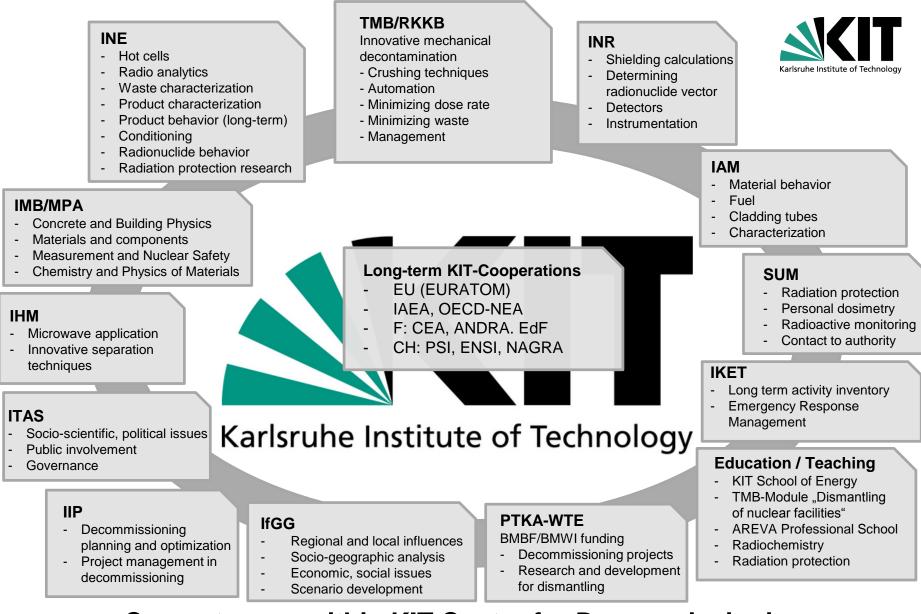
Enhanced cooperation:

- with other universities, research centers, government agencies and industry, in Germany and in Europe.
- Cooperative support international initiatives to maintain competence (as Summer Schools in Decommissioning).
- Representation and tracking of trends in job development and the training capacity of the dismantling.

Strategic objectives of the decommissioning cluster (2/2)

- Acquiring external funding with industry and other organisations,
- Attracting grants for advanced courses, promotions and scholars
- Recruitment and training of qualified young scientists
- Publications in journals and newspapers
- Organize public events, such as trade fairs or open house days.
- Participation in the development of international standards in decommissioning

KIT Establishes Center for Decommissioning



Bundling the expertise for a safe dismantling of NPP in the scope of the German Energiewende; Innovative technologies – radiation protection – technology assessment

Press release, Nr. 020 | or, lg | 25.02.2015

http://www.kit.edu/kit/english/pi_2015_16383.php

Competences within KIT Center for Decommissioning

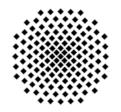
8

Decommissioning Department at TMB

- First German Professorship in Decommissioning of Nuclear Facilities established in 2008
- Close cooperation with industry e.g. mock-Ups:

Prof. Dr. Sascha Gentes

Wire saw cutting of stainless steel brackets


9

Decommissioning of heavy concrete ceiling for research reactor KNK

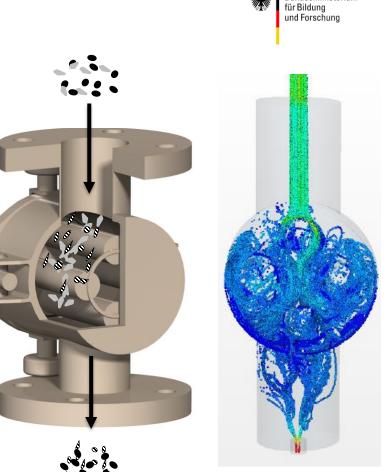
Concrete crusher for waste processing and packaging

Minimisation of secondary waste

Cooperation between KIT and University Stuttgart

Objective:

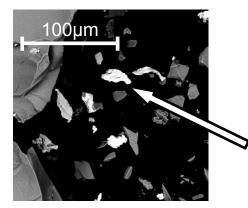
 Minimisation of secondary waste (with contaminated swarfs and cutting technique) by magnetic separation


R&D tasks:

- Optimisation of the separation rate
- Experimental and numerical investigations

GEFÖRDERT VOM

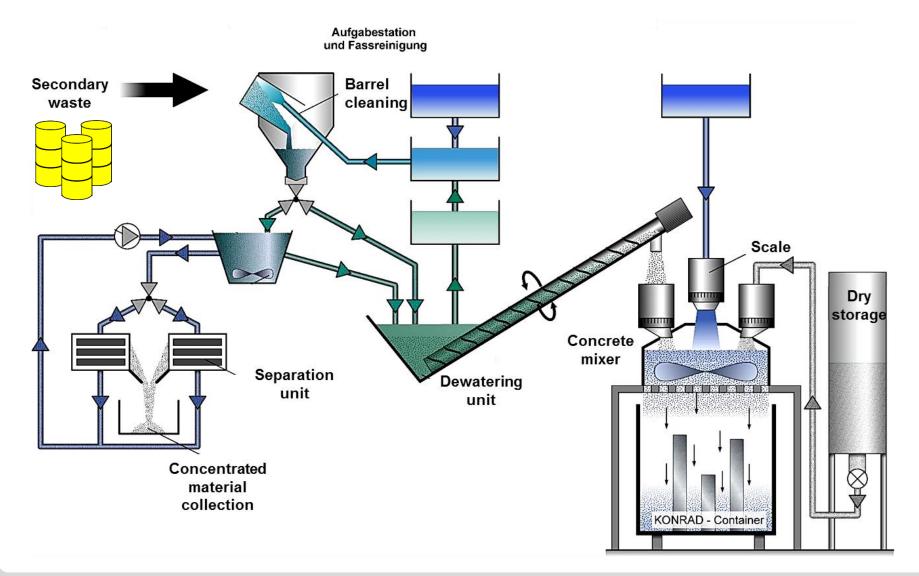
Bundesministerium


Bilder: M. Brandauer, KIT

Water abrasive cutting waste treatment

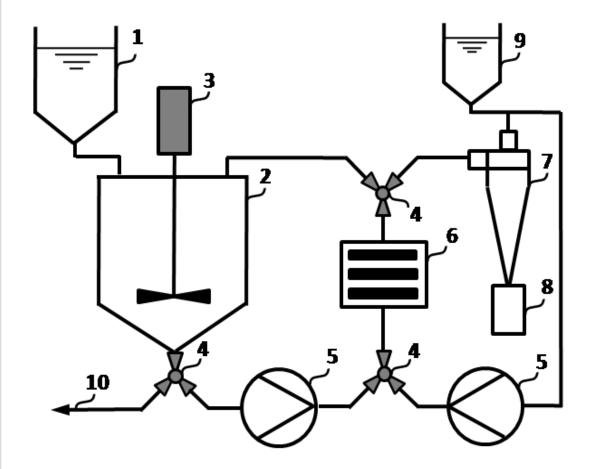
Source: ANT AG

State of the art:

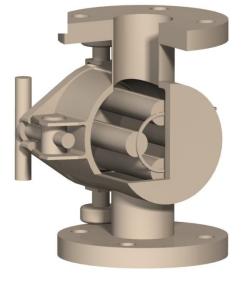

- WASS method has successfully been applied
- Attachment to manipulator possible
- Large amounts of secondary waste

Research and Development

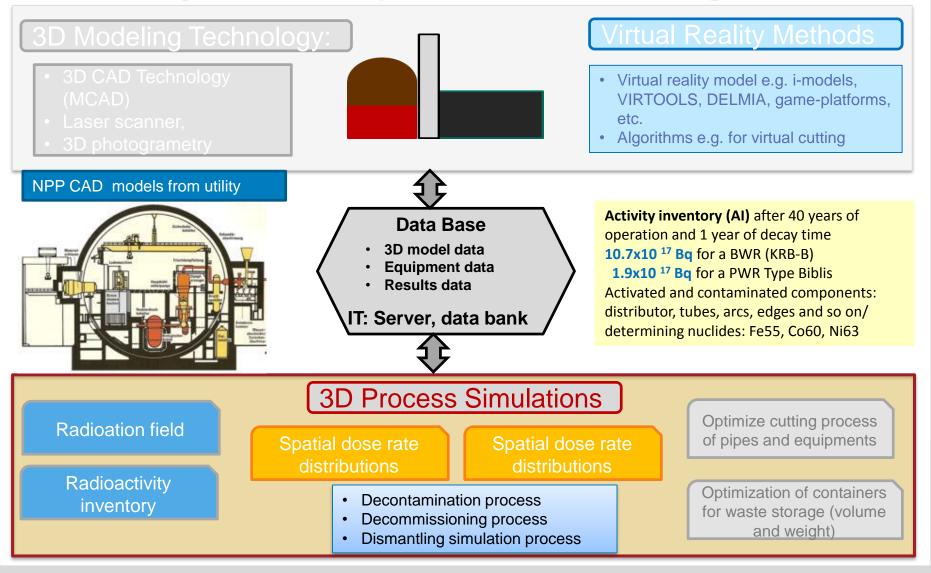
- Reduction of secondary waste by physical separation
- Further processing by admixing in the backfill concrete of KONRAD containers


Water abrasive cutting waste treatment

Process chain for prototype development

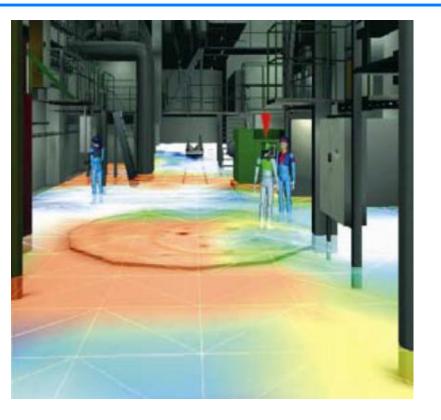

- **1** Feeding container
- 2 Slurry mixer
- 3 Drive gear
- 4 2/3-way ventile
- 5 Membrane pump
- 6 Magnet filter
- 7 Sedimentation container
- 8 Reservoir
- 9 Fresh water container
- 10 Removal of filtered material

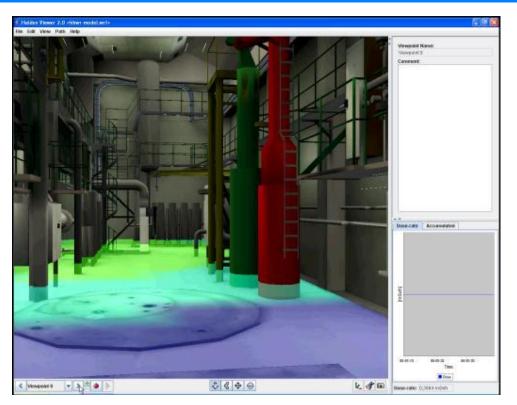
Prototype of the separation process


Programme Nuclear Waste Management, Safety and Radiation Research

ELINDER Launch Event, Bratislava, 02/12/16

Institute for Neutron Physics and Reactor Technology (INR)


Virtual Reality Platform for optimized Decommissioning



Minimisation of radiation exposure of personnel

Calculation of radiation exposure by modern Virtual Reality-Tools:

- VRDose as a strong tool to visualise radiation fields (applied in OECD Halden project)
- Combined with CAD-Geometries
- Online-calculation of the radiation exposure of personnel

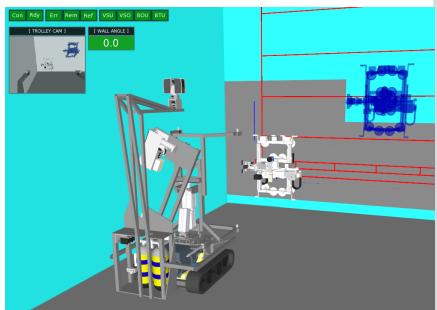
Exploration, Path planning and Control

Environmental Model

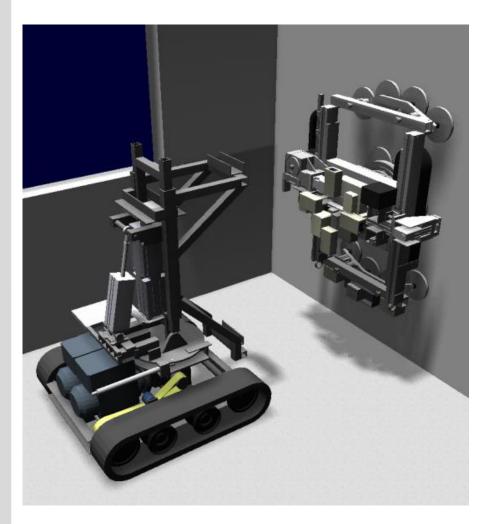
FARO 3-D laser scanner (mid-res scan of 0.035° angular resolution \rightarrow ~ 40 mio. points)

Co-operation partner: Institute for Anthropomatics and Robotics (IAR)

Control and Simulation


- Seamless alternation between actual system and simulation
- Predictive visualization and validation of path planning results
- Documentation and visualization of detector measurement results
- Sponsored by: (FKZ 02S8881)

Federal Ministry of Education and Research



17

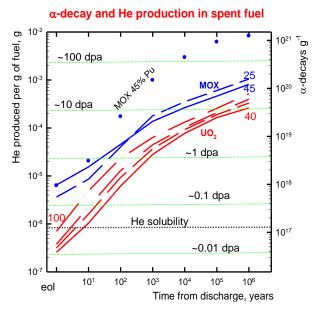
Manipulator Operated Decontamination and Release Measurement of Surfaces

State of the art:

- Mechanical decontamination methods causing contaminated dust
- No remote controlled systems for the decontamination of surfaces

Research and Development

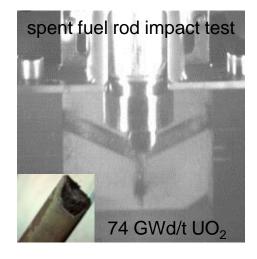
- Development of a complete system for remote controlled decontamination of surfaces
- Prevention of contaminated dust


Spent fuel safety studies at JRC-Karlsruhe

assess SF/wasteform ability to fulfil its expected function over long-term

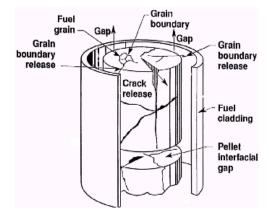
(Extended) Storage

radionuclides **containment**, rod **retrievability** (≥100 y?)


SF evolution: decay damage and He accumulation effects

Accident conditions

pools, handling, transport, storage, retrieval:


mechanical load, impact resistance; corrosion, loss of cooling; damaged SF, debris properties

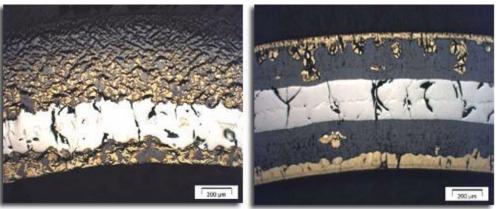
Geologic Repository

reduce uncertainties on release of long-lived radionuclides over an *openended disposal timescale*

radionuclides "Source Term", "Instant Release" matrix corrosion: environment and SF effects

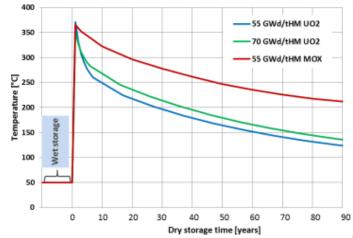
Convey experimental data into models and codes (predictions)

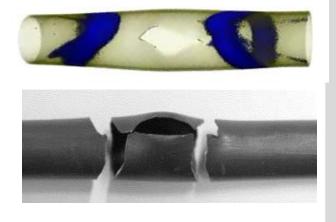
Long term storage of fuel elements Expertise due to QUENCH Team


Topics:

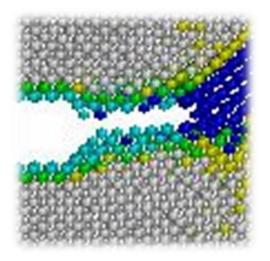
Long term behaviour of fuel element materials in LWR

Long term interim storage

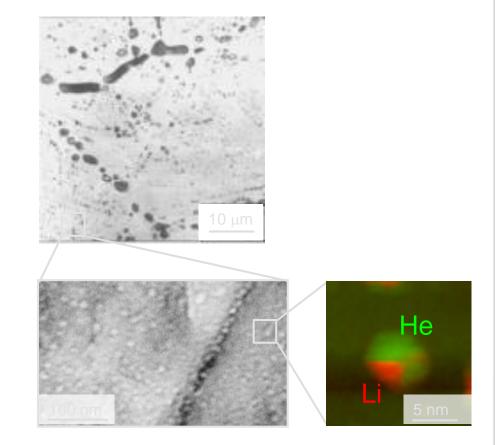

Examples of Expertise:


- Analysis of oxidation of zirconium alloys in different atmospheres (steam, air, oxygen, nitrogen)
- Analysis of the behavior of new cladding tube alloys developed to improve the long-term stability at high temperatures

Formation of zirconium nitride ZrN (golden phase) by oxidation of zircaloy-4 in air (left) or by reaction of oxidized zircaloy-4 with nitrogen (right)



Neutron tomography and break behaviour


Expertise: Material Behaviour under Irradiation

Atomistic simulation of fractures

Irradiation induced porositiy formation

Hot cells

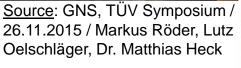
Programme Nuclear Waste Management, Safety and Radiation Research

ELINDER Launch Event, Bratislava, 02/12/16

Materials Testing Institute University of Stuttgart

Transport- and Storage Casks

Analysis and Assessment of relevant safety goals


- Material- and fabrication quality
- Structural integrity
- Tightness

Objectives:

- Transport and storage handling
- Incidental scenarios

R&D tasks:

- Analysis of dynamic impacts on storage casks and fuel element structures
- Long-term behaviour of storage cask materials

- University Study: Industrial Safety Courses in:
- Occupational safety
- Operational safety
- Radiation Protection
- Environmental technology
- Nuclear energy

Excellent opportunity for specialised study of decommissioning of nuclear facilities

Certificate: Bachelor of Science (B.Sc.)

Baden-Wuerttemberg Cooperative State University (DHBW)

Conclusion and Outlook

- Strong demand and necessity to build-up and enhance competencies for decommissioning and waste management of nuclear facilities
 - In Germany, but as well for whole Europe
- Unique competencies are combined in the various institutions of the decommissioning cluster
- Bundling and focusing of the know-how will lead to an added value not only for Germany, but for Europe
- In the long-term, education and training of scientists and engineers is of crucial importance

DrIng. W Phone:	/alter Tromm +49 721 608 2 5509	Web:	http://www.nuklear.kit.edu/	
Prof. DrI				
Phone:	+49 721 608 4 8080	Web:	http://www.tmb.kit.edu	
Mail:	martin.brandauer@kit.edu			E1292

