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ABSTRACT 

A simple approximation formula is derived here for the dependence of the period of a simple pen-

dulum on amplitude that only requires a pocket calculator and furnishes an error of less than 0.25% 

with respect to the exact period. It is shown that this formula describes the increase of the pendulum 

period with amplitude better than other simple formulas found in literature. A good agreement with 

experimental data for a low air-resistance pendulum is also verified and it suggests, together with the 

current availability/precision of timers and detectors, that the proposed formula is useful for extending 

the pendulum experiment beyond the usual small-angle oscillations. 
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I. INTRODUCTION 
 

 The periodic motion exhibited by a simple pendulum is harmonic only for small-angle 

oscillations, for which there is a well-known period formula.1 Beyond this limit, the equation 

of motion is nonlinear, which makes difficult the mathematical description of the oscilla-

tions.2 Although an integral formula exists for the period of such nonlinear system, valid for 

any amplitude,2 it is often avoided in introductory physics classes because it is not possible to 

evaluate such integral exactly by applying the Fundamental Theorem of Calculus. This is 

why almost all introductory physics textbooks and lab manuals recommend the readers to re-

strict the study to small-angle oscillations, for which the approximation sinθ ≅θ, with θ in ra-

dians, works and a harmonic motion is obtained. The pedagogical advantage is that the lin-

earized equation has a simple exact solution, whose derivation is promptly understood by 

first-year students.1 At this point, the authors would like to emphasize that such linearization 

has bothered them since their own undergraduate times because the amplitude needs to be 

less than 7o if an error below 0.1% (the typical experimental error obtained with a stopwatch) 

is desired and the reader should recognize that pendulum applications with such small oscilla-

tions are rare.3 Indeed, as the authors and their colleagues have noted, the more interested 

students often ask for a formula that could describe the pendulum period for oscillations be-

yond the small-angle regime wishing to explore the motion for larger amplitudes and then to 

compare its period to that for small amplitudes. In fact, the restriction to small-angle oscilla-

tions hinders the understanding of real-world behavior since the isochronism observed in this 

regime soon vanishes for increasing amplitudes.4 From the experimental viewpoint, this is 

also unnecessary because a millisecond precision in period measurements is easily obtained 

with current technology (accurate timers and detectors).5−8  For instance, an experimental er-

ror of the order of 0.1% or less is typically obtained with a one meter-long pendulum, a fact 

that gives support to accurate experimental studies of the dependence of the period on ampli-
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tude for large-angle oscillations, even in introductory physics labs.7,8 However, such experi-

ments have not been encouraged by the instructors and it should be due to the difficulty in 

finding a simple but accurate analytical formula for the pendulum period, i.e. a formula that 

only requires a few operations on a pocket calculator and whose deviations from the exact 

values are of the same order of the experimental error. 

 In this paper, a closed-form approximation formula for the pendulum period with the 

features pointed above is proposed. Comparisons to similar attempts published recently, as 

well as to experimental data gathered from literature and taken by us, are also given. 

 

 

II. APPROXIMATION SCHEME 
 

 A particle of mass m suspended by a massless rigid rod of length L that is fixed at the 

upper end, moving in a vertical circle, composes an ideal simple pendulum, which oscillates 

with a symmetric restoring force (in the absence of dissipative forces) due to the force of 

gravity.2 This “simple” mechanical system is illustrated in Fig. 1 and its equation of motion 

can be obtained by equating the gravitational torque to the product of the moment of inertia 

and the angular acceleration (see, e.g., Refs. 1−3). The resulting differential equation for the 

angular displacement simplifies to 

2

2 sin 0d g
Ldt

θ θ+ =  ,                                                     (1) 

where g is the local acceleration of gravity. Note that we chose θ=0 at the stable equilibrium 

position (see the vertical dashed line in Fig. 1). For a given initial condition, i.e. once θ(0) 

and dθ/dt(0) are chosen, the exact solution for the initial value problem can be obtained only 

numerically. Therefore, some approximation should always be assumed in searching for an 

analytical formula for the pendulum period, which is much desired in view to cover this topic 
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in introductory physics classes. For small-angle oscillations, the approximation sinθ ≅θ  is 

valid and Eq. (1) becomes a linear differential equation analogue to that for the simple har-

monic oscillator. Within this regime, the pendulum oscillates harmonically with a period that 

tends to 0 2 /T L gπ=  as the amplitude tends to zero, a well-known textbook formula.1 As 

will be discussed further, T0 underestimates the exact period for any amplitude, but this is 

almost imperceptible in the small-angle regime wherein the oscillations are practically 

isochronous, since T0 does not depend on amplitude. Beyond the small-angle regime, T0 be-

comes unsuitable and Eq. (1) can be taken up again for a direct numerical solution. On the 

other hand, an integral expression for the exact pendulum period may be derived based only 

upon energy considerations, without detailed discussions on differential equations. Since the 

system is conservative, the principle of conservation of mechanical energy applies and will be 

used to put the velocity as a function of θ. Taking the zero of potential energy at the lowest 

point on the path of the pendulum bob, as seen in Fig. 1, and choosing for simplicity the ini-

tial conditions as ( ) 00θ θ=  and ( )0 0d dtθ = , one has2 

( ) ( )
2

2
0

11 cos 1 cos
2

dmgL m L mgL
dt
θθ θ� �− = + −� �

� �
.                              (2) 

This equation may be solved for d dtθ , which results in 

( )0
2 cos cosd g

dt L
θ θ θ= ± −  ,                                             (3) 

where the + (−) sign is for the counter-clockwise (clockwise) motion, according to Fig. 1. In-

tegrating d dtθ  for the motion from θ0 to 0 (thus taking the “−” sign into account) and not-

ing that such displacement requires a time interval equal to a quarter of T, the exact pendulum 

period, one has 

0

0 0
2 2

cos cos
L dT
g

θ θ
θ θ

=
−�  .                                         (4) 
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This definite integral cannot be solved in a closed-form in terms of elementary functions (i.e., 

the integrand has not an antiderivative), which is a feature common to all elliptical inte-

grals.2,10 Indeed, the evaluation of the exact pendulum period through Eq. (4) by applying 

numerical integration techniques is not straightforward because there is a vertical asymptote 

to the function 01 cos cosθ θ−  at θ =θ0, which makes the integral improper. Therefore, the 

usual Newton-Cotes rules for numerical integration do not furnish accurate results, as pointed 

out by Schery (who applied Simpson’s rule).11 Fortunately, this difficulty can be circum-

vented by substituting cosθ  by ( )21 2sin 2θ−  and then making a change of variable, given 

implicitly by 
( )
( )0

sin 2
sin

sin 2
θ

ϕ
θ

= . This changes Eq. (4) to 

2

2 20
4

1 sin

L dT
g k

π ϕ

ϕ
=

−�  ,                                            (5) 

where ( )0sin 2k θ≡ . The above definite integral is K(k), the complete elliptic integral of the 

first kind, which is not improper since k < 1 for any θ0 <π rad. Thus, it is not difficult to 

evaluate T with the aid of a computer for a given amplitude, since standard numerical integra-

tion codes are largely available in many programming languages (e.g., FORTRAN, 

PASCAL, C, etc.). However, this task can become much tedious if only a pocket calculator is 

available, as usually occurs in introductory physics classes. 

 For a comparison with T0, the small-angle period approximation, it is more appropri-

ate to write T as ( )0
2T K k
π

× . This leads to the following relative error: 

( )0 1
2

RE
K k
π= −  ,                                                       (6)  

which depends on θ0 implicitly through k. As may be verified graphically, the absolute value 

of this error increases rapidly with θ0.9 
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 The approximation formula for the pendulum period that is being proposed here in 

this paper comes from the perception that ( ) 2 2; 1 sinf k kϕ ϕ≡ − , i.e. the denominator of 

the integrand in K(k), is a smooth function for 0 2ϕ π≤ ≤  (i.e., the limits of integration). 

This is true for any θ0 between 0 and π/2 rad,12 which corresponds to k between 0 and 

2 2 , as shown in Fig. 2. Taking the points (0,1) and (π/2,a) for a linear interpolation, 

where ( ) ( )2
02; 1 cos 2a f k kπ θ≡ = − = , it is found that 

( ) ( )0
2; 1 1r aϕ θ ϕ
π

= − −                                                   (7)  

is the straight line that can be taken for approximating f(ϕ;k) in the range 0 2ϕ π≤ ≤ . An 

approximation, then, arises for K(k): 

( )
( )

( )2

0

ln
2 2 11 1

adK k
aa

π ϕ π

ϕ
π

≅ = −
−− −

�  .                                    (8) 

This leads to a simple approximation formula for the exact period: 

( )
log

ln
2

1
aLT

g a
π= −

−
 .                                                    (9) 

Note that ln(a)<0, hence Tlog is positive. Despite the simplicity of this formula, it is impor-

tant to check out its accuracy in representing the exact pendulum period. This task is simpli-

fied if one writes  Tlog  as  
( )

0
ln
1

a
T

a
−

−
, which furnishes an error ( )

( )
log

ln
1

2 1
a

RE
K k a
π= − −

−
. 

 In the next section, the accuracy of the approximation formula established in Eq. (9) 

in representing the exact pendulum period, as given by Eq. (5), will be compared to that of 

other approximation formulas found in literature. 
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III. COMPARISON WITH OTHER APPROXIMATIONS 
 

 The accuracy of the logarithmic approximation proposed in Eq. (9), above, for the 

large-angle pendulum period should now be compared to that of other approximation formu-

las found in the physics teaching literature, for amplitudes below π/2 rad.12 

 The errors found in approximating T, given in Eq. (5), by T0 and Tlog,  as well as by 

other approximation formulas are depicted in Fig. 3. Clearly, the small-angle approximation, 

whose relative error is RE0, exhibits the worst behavior since its error becomes greater than 

0.1% (0.5%) for amplitudes above 7o (16o). Perhaps the most famous formula for the large-

angle period is the approximation given by Bernoulli from a perturbative analysis of Eq. (5). 

Truncating the resulting series at the 2nd term, one obtains 

2
0

2 0 1
16

T T θ� �
= +� �� �

� �
 .                                                      (10) 

It was a surprise to us to verify that this formula (in fact, one of the most used) leads to an er-

ror that increases rapidly, overcoming 0.1% (0.5%) for amplitudes above 41o (60o), as seen 

observing the curve RE2 in Fig. 3. Therefore, it is inadequate for studying large-angle pendu-

lum periods. One may even argue that the addition of more terms improves the accuracy of 

T2, but all terms up to and including the 8th-order one should then be included (see Ref. 14) 

and it makes the formula both voluminous and unpractical. 

 More recently, other approximation formulas for the pendulum period were proposed. 

Among these formulas, the Kidd-Fogg one has attracted much interest due to its simplicity.8 

It is given by: 

0
0

1

cos
2

KFT T
θ

=
� �
� �
� �

 .                                                   (11) 

The dash-dotted line in Fig. 3 represents the error committed by assuming TKF as the exact 
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period. Clearly, it furnishes an error greater than 0.1% only for amplitudes above 57o, reach-

ing 0.8% for 90o. Then, it is only reasonable for interpreting the experimental data taken for 

the pendulum period in the large-angle regime, contrarily to what is pointed out by Millet,15 

who argues that it should be included in textbooks. 

 Another approach for creating an approximation formula for the large-angle period is 

to make an interpolatory-like linearization directly in Eq. (1), as first done by Molina.16 The 

resulting expression is simply 

3 8
0

0
0

sin
MT T

θ
θ

−
� �

= � �
� �
� �

 ,                                                 (12) 

which furnishes an error greater than 0.1% only for amplitudes above 69o (see the thin solid 

curve in Fig. 3). Although it seems to be acceptable, the error curve reaches ~0.4% for θ0 = 

90o, thus it is not so good for much large amplitudes. 

 At last, the error curve for the logarithmic formula we are proposing here for the pen-

dulum period, represented by RElog in Fig. 3, remains below all other error curves for any 

amplitude below 90o. Note that it is above 0.1% only for amplitudes greater than 74o. More-

over, it increases slowly, reaching only 0.2% for an amplitude of 86o. This shows that our 

formula works well even for very large amplitudes (near 90o). In other words, Tlog approxi-

mates the exact period better than other simple formulas found in literature. 

 

 

IV. EXPERIMENT AND RESULTS 
 

 For checking the applicability of the new approximation formula developed here for 

the period of a simple pendulum oscillating beyond the small-angle regime a comparison to 

reliable experimental data is required. In fact, this is mandatory since we are intending to fur-

nish a formula for helping students to interpret their own experimental data for large-angle 
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pendulum periods. 

 Unfortunately, accurate experimental data for the dependence of the period of a sim-

ple pendulum on amplitude are not abundant in the physics teaching literature. It seems that 

the more reliable ones are the data collected by Fulcher and Davis (see Ref. 4) using a pendu-

lum made with a piano wire and observing two complete runs and the data published by Cur-

tis (see Ref. 17) in which the period was taken as the average for ten successive periods, for 

each amplitude. Both works are good examples of accurate period measurements made with 

an ordinary stopwatch. Of course, the measurement of the time interval for n successive peri-

ods is a good strategy for oscillations in the small-angle regime, where all the runs spend al-

most the same time, but not for large-angle oscillations because the period decreases consid-

erably from one oscillation to the next due to air damping, leading to an average period 

shorter than the desired period of the first oscillation (for which the amplitude is just the 

measured initial angle θ0). Clearly, both set of data contain such underestimation for the pe-

riod of large-angle oscillations, as may be seen in Fig. 4, where the ratio T/T0 is plotted as a 

function of the amplitude (the typical graph requested from students in lab manuals). Also in-

cluded in this figure is the set of measurements taken by us in a more sophisticated experi-

ment whose arrangement details were the subject of a recent paper.5 In our experiment, both 

the time-keeping and position detection processes were done automatically in a manner to re-

duce the experimental error in the period measurements to the µs scale (note that the error in 

time-keeping when a common stopwatch is used is of the order of 0.2 s, i.e. the human reac-

tion time). Indeed, we decided to measure the period by keeping only the time interval be-

tween two successive passages over the lower point of the pendulum’s circular path (i.e., 

T /2) in order to reduce damping effects on the measured period, mainly for large amplitudes. 

 It is important to mention that we devoted much attention to the reduction of air resis-

tance to the motion of the pendulum’s bob. This was done by implementing an electronic 
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process for time-keeping and position detection, as mentioned above, and also by choosing 

suitable materials and parameters for the simple pendulum. In this way, since the small size 

and large weight of the pendulum’s bob is an important factor for reducing the effect of air 

resistance on the pendulum period, we choose lead as the bob’s material due to its higher 

density in comparison to other metals. This allowed for a body that is both small and weighty 

(m = 0.400 kg). We also found that the cylindrical form is preferable over the spherical one 

for it allows a better localization of the center of mass, which in needed for measuring L ac-

curately. Another advantage is the possibility of reducing the damping by reducing the scat-

tering cross-section of air, i.e. by choosing a diameter much smaller than the height of the 

cylinder, which led us to fabricate a body that we called a “pen of lead”. For this massive 

pendulum we verified that cords made of nylon, possibly the most used material, are inade-

quate since they stretch considerably throughout each oscillation, particularly for large-angle 

oscillations, and it causes undesired vibrations. The more convenient material, taking into ac-

count lightness (see Ref. 18 for the importance of this factor), price, and availability, seems to 

be cotton, thus we used a common sewing thread as the pendulum cord. We also investigated 

the length of the pendulum’s cord that furnishes the better results for large-angle oscillations. 

After comparing many lengths for an amplitude of 60o, we choose a length of 1.500 m in 

view to circumvent the difficulties related to the damping in fast oscillations obtained with 

shorter cords, since the air resistance increases with velocity.19 Additionally, this length ac-

counts for a small (say, not tedious) period of about 2.5 s. 

 All these precautions led us to much accurate experimental data for the pendulum pe-

riod, for amplitudes between 0 and 90o, as may be confirmed in Fig. 4 where it is easy to see 

that our experimental data (black points) are more near the exact period expected in the ab-

sence of air resistance (the solid line) than the data published in Refs. 4 (crosses) and 17 (cir-

cles). Also in Fig. 4, it is clear that our logarithmic approximation formula is in better agree-

ment to the experimental data than the other simple formulas found in literature. 
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 Of course, we developed a pendulum experiment whose precision goes beyond that of 

a typical one worked out in introductory physics labs, but this was essential for obtaining a 

reliable set of experimental data for the pendulum period as a function of amplitude. More-

over, with the increase of the presence of sophisticated electronic equipments and computers 

in introductory physics labs it will not be difficult to instructors to advise their students on 

developing an experiment similar to the one we carried out. 

 

 

V. CONCLUSIONS 
 

 In this paper, a simple approximation formula relating the pendulum period to the am-

plitude whose accuracy is better than all other simple formulas found in literature is proposed 

and tested experimentally. The closed-form approximate expression that arises when a linear 

interpolation is made for the integrand of the elliptical integral that appears in the exact pe-

riod expression only requires a pocket calculator for period evaluations and furnishes an error 

of less than 0.25% when compared to the exact period (found numerically). The other formu-

las found in literature most consists on deriving corrections to the small-angle approximation 

by taking either a Maclaurin polynomial approximation for sinθ directly in the equation of 

motion2,11,20 or by applying perturbation theory,4,21 but these approaches are not simple for 

first year students. The logarithmic formula proposed here was also tested experimentally, 

presenting a better agreement with the data measured with low air-resistance pendulums. For 

reducing the effect of air resistance, which is usually the main source of experimental error in 

large-angle pendulum experiments,5,8,17 we choose the pendulum material and format care-

fully and also adopted an automatic process for accurate time interval measurements. More-

over, the usual strategy of keeping the time interval corresponding to many successive oscil-

lations and then taking the average period as the experimental value of the period of the first 
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run was verified to be inadequate for measuring the period of large-angle oscillations because 

the amplitude and the period itself decay rapidly from one oscillation to the next, which leads 

to averages that are smaller than the true period for the first run. This inconvenience was 

overcome by measuring only a half of the period in the first run, for each amplitude. These 

strategies lead to accurate experimental data that may be used for comparisons to the existing 

approximation formulas for the pendulum period as a function of amplitude. This compares 

favorably to our approximation formula, which is in better agreement to experimental data 

taken by us and gathered from literature. In closing, the measurement of the period of a sim-

ple pendulum − a standard activity in introductory physics labs − could become more inter-

esting for students if teachers extend the period measurements to large-angle oscillations and 

adopt the logarithmic formula proposed here. The spontaneous classroom discussions we 

watched in our own classes during and after the large-angle pendulum experiment, mainly on 

the manner the period increases with amplitude and how it could be measured, motivated us 

to exchange this experience with other teachers (the readers) in viewing to divulgate our ap-

proach to this old theme. 
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FIGURE  CAPTIONS 

 

Fig. 1.  The simple pendulum circular motion. The pendulum bob is released from a position that 

forms an angle θ0 with the vertical, at rest, and passes at an arbitrary position θ (<θ0) with a velocity 

L d dtθ . Note that the height of the mass m depends on θ according to L−L cosθ. 

 

Fig. 2.  Behavior of the function ( ) 2 2; 1 sinf k kϕ ϕ= −  for ϕ between 0 and π/2 rad and for some 

values of k(θ0). The horizontal and vertical dashed lines are f(ϕ;k)=1 and ϕ=π/2 rad, respectively. 

The dash-dotted line is the linear interpolation curve r(ϕ;θ0)  for θ0=π/2 rad. 

 

Fig. 3.  Comparison of the relative errors committed by using the approximations formulas discussed 

in the text for representing the exact period. All error curves increases monotonically with θ0. The 

horizontal dashed line marks the 0.1% level. The error committed in applying the small-angle ap-

proximation (RE0) is greater than 0.1% for θ0>7o and reaches 15.3% for θ0=90o. Note that the rela-

tive error committed by the proposed logarithmic formula (RElog) is smaller than that of the other sim-

ple approximation formulas, for all amplitudes. 

 

Fig. 4.  Comparison of the ratio T/T0 for some approximation formulas and experimental data. The 

dotted curve is for the Bernoulli formula (see Eq. (10)). The dash-dotted curve is for the Kidd-Fogg 

formula (see Eq. (11)). The dashed line is for the Molina approximation formula (see Eq. (12)). The 

short-dashed line is for our logarithmic formula (see Eq. (9)). The solid line is the curve for the exact 

period, found via numerical integration of K(k) in Eq. (5). The experimental data were taken from 

Ref. 4 (+) and Ref. 17 (o). The solid (black) diamonds are our own experimental data. Note that the 

better agreement between the experimental data and the approximation curves is obtained for our 

logarithmic formula. 
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