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Almost all commonly perceived manifestations of matter are somehow related to
electrons in atoms, molecules or crystals:

• We see objects around us. For this, light is needed. A photon (a quantum of en-
ergy of light) is emitted from an atom (or from a moelcule or cystal). It carries some
energy. This energy had to be released somehow by the atom. In the early 20th cen-
tury, physisists discovered that an atom is made up of a small and heavy positively
charged nucleus and light and negatively charged electrons moving around the nuc-
leus. Electrons moving in the field of a nucleus have some energy. This energy can
be decreased by emiting a photon. So howwe visually perceive or measure objects
with optical instruments is related to the electronic structure of atoms, molecules
and solids.

• Mechanical properties of matter (elasticity, hardness, viscosity, etc). They may, of
course, depend also on atomic masses. Above all, however, they are influenced by
the nature of the interactions and forces acting between atoms and molecules. These
interactions are related to the distribution of electrons in matter. The nuclei of atoms
usually enter the description of these properties effectively only as point (classical)
particles with certain masses, charges and possibly also with internal angular mo-
menta (spins of the nuclei).

• Chemical reactions. They are a unique example in that very rich manifestations of
electronic structure of atoms, ions, molecules as well as radicals can be observed.
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Some substances react together, others do not. It depends on their ability to form
a chemical bond, and this ability depends on the specific properties of the electron
shells of the atoms and molecules in the substance.

• Electrical conductivity. Metals are typical conductors. Their electrical conductivity
is caused by the presence of conduction electrons, which can move under the influ-
ence of the loaded electric field (i.e voltage). Whether a material contains conductive
electrons or other charge carriers (e.g., holes) also depends on the type of atoms (and
the number of electrons in them), i.e., what electronic structure they form.

Since the physics of the world of electrons, atoms, molecules and crystals is quantum
physics, this lecture will make extensive use of it.

1 Reminder of Basis Postulates ofQuantum Mechanics

Although some of you have already completed the course of Quantum Mechan-
ics (QM), it will first be useful to recall in some condensed form and summarize what
we will need from it. In this introductory lecture, we will briefly go through the pos-
tulates of QM. They are postulates of wave QM, i.e. QM written in the formalism of
wave functions, and for the sake of simplicity only for a one-particle system. We will
approach by exposing selected and condensed topics mostly according to [1].

1.1 The First Postulate ofQuantum Mechanics

Electrons in matter, as well as other objects of the microworld with relatively small
energies, are generally not well described by classical concepts of position and mo-
mentum. Instead, we use wavefunctions and a certain statistical apparatus.

The probability density of finding a particle at certain point r⃗ is defined by formula

ρ(r⃗, t) =
dP
dV

And here is the postulate:

To every state of a particle, a complex function ψ(r⃗, t) is assigned, such
that it perfectly characterises the state (completely describes it). Square
of the absolute value of the function is equal to the probability density of
finding the particle at the point r⃗ at time t:

ρ(r⃗, t) = |ψ(r⃗, t)|2
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So we have
dP (r⃗, t) = ρ(r⃗, t) dV

Implication 1: For a finite spatial domain Ω, the following formula applies:

P (Ω, t) =

∫
Ω

ρ(r⃗, t) d3r

Implication 2: Because the particle must be somewhere, we have∫
ψ∗(r⃗, t)ψ(r⃗, t) d3r = 1

From this we obtain two conditions for ψ:

(1) In order for this intergal to exist, it must hold that

lim
|r⃗|→∞

ψ = 0

(2) ψ has to be such that the whole integral does not depend on time (although ψ∗ψ
may depend on time).

1.2 The Second Postulate ofQuantum Mechanics

This postulate concerns the determination of the mean values of physical quantit-
ies. Before we express it, we must introduce certain concepts and learn certain know-
ledge about operators in QM.

1.2.1 Mean Values of the Coordinates. PureQuantum Ensemble

Measured quantities in quantum-mechanical systems usually acquire random val-
ues. Therefore, it makes sense to ask about their average (mean) values. In this intro-
duction, let us consider an example from elementary statistics [1]: we have a bag with
coins of different values:
N1 coins with a value h1, N2 coins with a value h2, …, Nn coins with a value hn.
The total number of coins is

N1 +N2 + · · ·+Nn = N

The total value of coins is

N1h1 +N2h2 + · · ·+Nnhn = h
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The average value of one coin is

h̄ =
h

N
=

N1

N
h1 +

N2

N
h2 + · · ·+ Nn

N
hn

Suppose that all the coins have same size and weight. We shake the bag well and
take out one randomly selected coin. What is the likehood that it has the value h1?
Obviously,

P1 =
N1

N
; a obdobne ďalšie: P2 =

N2

N
, . . . , Pn =

Nn

N

Thus, the average value of one coin can be expressed by formula

h̄ =
n∑

i=1

Pihi (1)

Let us now focus our attention on the particle moving, for simplicity, along a segment
of a straight line. Imagine that we know the probability density ρ(x) of finding the
particle at any point x. [It need not be a quantum-mechanical (QM) particle; we just
need such a one motion of which has a random nature.] What is the mean (average)
coordinate of such a particle? Countrary to the example with coins, here we have a
continguous set of possible values, that is also and infinite set. Anyway, we find the
following result:

x̄ =

∫ b

a

dx ρ(x)x

And now let us go to QM.We know that the probability density of finding a QMparticle
is ρ(x, t) = ψ∗(x, t)ψ(x, t). Therefore

x̄(t) =

∫ b

a

ψ∗(x, t)xψ(x, t) dx

It might have beenwrittenmore compactly but wewill see that is has a sense to expand
it as we have done. Compared to the previous examples, we have also the time here
for ρ may vary with time. But the time stands here as a trivial parameter only. (There
is no integration over the time and the same time is on both sides of the equality.)

What actually do we mean by a mean value (e.g. of a coordinate) in QM? For
instance, we would like to measure the average position of an electron in a hydrogen
atom being in a certain quantum state (characterised by a certain wavefunction). Or,
what might be easier done, the average position of an electron in a potential well,
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in the simplest case one-dimensional.1 In general, however, it is a three-dimensional
problem and in such a case we, therefore, would aim to determine not only x̄, but also
ȳ and z̄. We would basically proceed as follows: We would prepare a large number
of hydrogen atoms in an identical manner, so that all of them would be described
by the same wavefunction ψ(r⃗, t). Such an ensemble (a set of systems with the same
wavefunction) is called a pure quantumensemble. Wewould placed a tinymeasuring
device at each of the atoms such that it would be able to record the position of the
electron on demand at time t. Using the measures position vectors from the individual
atoms, we woudl then calculated their average value. We would declare this to be the
quantum-mechanical expectation value (a mean value).

Knowing what to understand by the expectation value of a position vector in QM,
let us express it with the aid of the wavefunction. When considering the three dimen-
sions, we have to write, for instance,

dP = ρ(r⃗, t) dx dy dz = ρ(r⃗, t) d3r

and other notations are also being used for the volume element d3r. Otherwise, how-
ever, the formula will have the same structure:

x̄(t) =

∫
ψ∗(r⃗, t)xψ(r⃗, t) d3r (2)

and the integration goes over the entire (infinite) space; in such a case (multidimen-
sional integrals) we usually write a single integration symbol only and we omit writing
the integration bounds. Of course, formulae for the y and z coordinates would be writ-
ten quite analogously.

1.2.2 Mean Value of the x-component of the Momentum

We will not derive this; we will only recall what you should already know:

p̄x(t) =

∫
ψ∗(r⃗, t) p̂x ψ(r⃗, t) d3r (3)

where
p̂x = − ih̄ ∂

∂x
(4)

and we would analogously write it for p̂y a p̂z .
1In a real experiment, it would mean that one of the dimensions – the length – of such a structure

would be much larger than the remaining two dimensions. Such a groove might technologically be
formed on a surface of a solid material or at an interface of surfaces. Even a two-dimensional structure,
i.e. a two-dimensional potential well, could be formed on a surface.
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1.2.3 Position Operator, Momentum Operator and Other Operators

We can now indicate what the 2nd postulate will be about: in QM, every physical
quantity F has a corresponding operator, which we denote by the symbol F̂ , such that

F̄ (t) =

∫
ψ∗(r⃗, t) F̂ ψ(r⃗, t) d3r

We will make this postulate more accurate later. To be able to do so, we first have to
examine propeties of operators being used in QM. We now define several further QM
oparators on the basis of the correspondence with classical mechanics.

ˆ⃗p = e⃗xp̂x + e⃗yp̂y + e⃗zp̂z = − ih̄
(
e⃗x

∂

∂x
+ e⃗y

∂

∂y
+ e⃗z

∂

∂z

)
(5)

Therefore
ˆ⃗p = − ih̄∇⃗ (6)

The angular momentum operator:

ˆ⃗
L = ˆ⃗r × ˆ⃗p = − ih̄ ˆ⃗r × ∇⃗ (7)

The kinetic energy operator:

T̂ =
ˆ⃗p . ˆ⃗p

2m
= − h̄2

2m
∇⃗ . ∇⃗ ≡ − h̄2

2m
∆ (8)

The operator of the potential energy of a point charge q in an external electric field
with the intensity E⃗(r⃗) = − gradU(r⃗):

V̂ (r⃗) = q U(r⃗) (9)

It is a simple operator in the sense that it is expressed by a usual number; e.g., there
is no derivative int its expression. For instance, assuming a coulombic field generated
by a (fixed in space) charge Q, we have U(r⃗) = Q/(4πε0r).

1.2.4 Properties of the Operators Used inQuantum Mechanics [1, 2, 3, 4]

Definition 1: Let D1 and D2 be two sets of functions (not necessarily different). By the
operator Â is called a prescription (rule) that assigns a function g ∈ D2 to each function
f ∈ D1, which we write symbolically g = Âf .
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Definition 2: An operator Â defined on a set D is called linear if

Â(c1f1 + c2f2) = c1Âf1 + c2Âf2 , ∀f1, f2 ∈ D , ∀c1, c2 ∈ C (10)

Definition 3: Given is an Â. If there exists such an operator Â† that the equality∫
f ∗Â f dτ =

∫
(Â†f)∗f dτ pre ∀f ∈ D (11)

holds, then the operator Â† is called Hermitian-conjugate to the operator Â.

Definition 4: If Â† = Â, then we say that Â is a hermitian operator.2

Example 1: The operator of multiplication by a complex constant: Â = c .∫ ∞

−∞
f ∗c f dx =

∫ ∞

−∞
(c∗f)∗f dx

From this we see that c† = c∗ ̸= c . It means that multiplication by a complex constant
is not a hermitian operator in general. It might be only in the case of zero imaginary
part of c.

Example 2: The operator of the derivative with respect to a coordinate: Â =
∂

∂x
. We

assume that it operates on a set of functions such that the integrals written bellow exist
and the function f goes to zero for x→ ±∞. Subsequently, with the aid of integration
by parts, we prove that ∫ ∞

−∞
f ∗ ∂

∂x
f dx =

∫ ∞

−∞

(
−∂f
∂x

)∗

f dx

Therefore (
∂

∂x

)†

= − ∂

∂x

meaning that the derivative operator is not a hermitian one too.

Example 3: Operator x̂ = x (i.e., multiplication by a coordinate, which is a real quant-
ity). Using the precedure as in Example 1 we see that at last we have a hermitian
operator:

x̂† = x̂
2In English-written literature, both hermitian and hermitean adjectives can be found. The first of

them is much more frequent but in the book [3] the second variant is used.
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Example 4: Operator p̂x = − ih̄ ∂
∂x

. Using a procedure similar as in Example 2 we find
out that

p̂†x = p̂x

that is, the operator of the x-component of the momentum is hermitian (although it
contains the derivative; it, however, includes also i). We will see that this is not an
accidence and it has a deeper and wider meaning.

Theorem 1: A physical quantity F has in each (quantum) state a real mean
value if and only if it is evaluated as an expectation value from some her-
mitian operator (which we denote as F̂ ).

Remark: Even if in this theoremwemention a “physical quantity” and “quantum state”,
it is a purely mathematical theorem (with its consequences for physics).
Proof:
(A) Let F̄ = (F̄ )∗. Using this assumption, we should prove that F̂ = F̂ †. Of course,
we have to suppose that the operator F̂ † exists; otherwise there would be nothing to
prove. We have

F̄ =

∫
ψ∗F̂ψ dτ =

∫
(F̂ †ψ)∗ψ dτ

as well as
F̄ ∗ =

(∫
ψ∗F̂ψ dτ

)∗

=

∫
(F̂ψ)∗ψ dτ

Because F̄ = (F̄ )∗, the equality∫
(F̂ †ψ)∗ψ dτ =

∫
(F̂ψ)∗ψ dτ

must hold for any function ψ from the set under consideration. The last equality can
only be fulfilled if F̂ = F̂ † what was to be proved.
(B) It now remains to conduct the proof in the reverse direction: startin from the as-
sumption F̂ = F̂ †, we have to prove that F̄ = (F̄ )∗. It is similarly simple and you can
try it as a homework.

Since any physical quantity can acquire real values only, the theorem just proven
implies that the respective operator in QM has to be a hermitian operator.

Theorem 2: Let there be a Hermitian-conjugate operator Â† to the operator
Â. LetA be a linear operator. Then for all f1, f2 ∈ D the following equality
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holds: ∫
f ∗1 Âf2 dτ =

∫
(Â†f1)

∗f2 dτ (12)

This statement also applies in the opposite direction.

Proof: It can be looked at in books [2, 3, 4] (but you do not need to know it on
the exam).
The equation in the last theorem can be written more transparently(∫

f ∗
1 Âf2 dτ

)∗

=

∫
f ∗
2 Â

†f1 dτ (13)

We will go through further definitions and theorems briefly; more detailed wording
and the proof can be found in the literature [2, 3, 4].

Definition 5: (Product of operators.) By the product of two operators we understand
the operator Ĉ = B̂Â such that

Ĉf = B̂(Âf)

Theorem 3: If Ĉ = B̂Â and if hermitian-conjugate operators to Â and B̂
exist, then

Ĉ
†
= Â†B̂†

Proof: We have done it as an exercise using Theorem 2.

Definition 6: The expression
[Â, B̂] ≡ ÂB̂ − B̂Â

is called the commutator of the operators Â, B̂.
In the subject Quantum Mechanics, you have learnt that, for instance,

[x̂, p̂x] = ih̄

1.2.5 Eigenfunctions and Eigenvalues of Operators

Assumewe have an operator Â (it need not be hermitian). If its action on a function
f generates the same function, or at most multiplied by a constant, such a function is

9



called an eigenfunction of the operator Â:

Âfa = afa

a is the respective eigenvalue of the operator; we attached the index a to the function
to highlight its association with the eigenvalue a.

The set of all eigenvalues of an operator is called the spectrum of the operator. An
operator can have many eigenfunctions and eigenvalues. If the set of the eigenvalues
is countable, the operator a discrete spectrum. If it is not countable, the operator has a
continuous spectrum. For instance, the equation

p̂x exp
(

i
h̄
ax

)
= a exp

(
i
h̄
ax

)
hold for the operator p̂x for any real a. Therefore, the eigenvalues of the operator p̂x
are all real numbers, i.e. it has a continuous spectrum.

The operator of the x-coordinate also has a continuous spectrum:

x̂f = xf

On the other hand, many operators have discrete spectra, for example the operator L̂z

and others. And there are also operators that have mixed spectra: a part is discrete,
other part of is continuous. This is the case of the hydrogen atom Hamiltonian and
also of many other very important operators.

To keep the notation and mathematical apparatus simple, we will formulate some
parts of the quantum theory apparatus only for operators having discrete spectra. In
cases of continuos and mixed spectra, procedures would in some cases be similar; it
is sufficient to imagine the associated “index” acquires values from a continuous set
or from a set that is continuous by parts. Continuous spectra, however, bring also
non-trivial complications, for example impossibility to normalise eigenfunctions; for
instance, an attempt to determine a norm of an eigenfunction of the momentum oper-
ator will fail: ∫ ∞

−∞

∣∣∣∣exp( i
h̄
ax

)∣∣∣∣2 dx→ ∞

that is, the integral does not exist.

Theorem 4: Eigevalues of a hermitian operator that correspond to normal-
isable eigenfunctions are real numbers [2].

Proof: Directly follows from Theorem 1. It can also be found in the cited books.
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Often there are several eigenfunctions for one eigenvalue:

Âfj,α = Λjfj,α , α ∈ {1, 2, . . . , g}

Then we say that the operator has a degenerate spectrum or that the eigenvalue is
degenerate (if g = 2, then doubly, if g = 3, then triply, etc).

Theorem 5: Eigenfunctions corresponding to different eigenvalues of a her-
mitian operator are mutually orthogonal [2, 3, 4].

Remark 1: That means that
∫
f ∗
mfn dτ ∝ δmn hold. If the eigenfunctions are normal-

isable, i.e. if the corresponding integrations converge, then we usually normalise the
eigenfunctions so that

∫
f ∗
mfn dτ = δmn .

Remark 2: The theorem does not imply orthogonality of linearly-independent eigen-
functions fn,j corresponding to the same eigenvalue (i.e. to a degenerate one).
Proof: Can be found in the cited books.

1.2.6 Formulation of the Second Postulate ofQuantum Mechanics

In quantum mechanics, every physical quantity F has a linear hermitian
operator F̂ associated to it such that the mean value (the expectation value)
of F (at time t) in a state described by a wavefunction ψ(r⃗, t) is given by

F̄ (t) =

∫
ψ∗(r⃗, t)F̂ ψ(r⃗, t) d3r (14)

The physical quantity F can only take values that are eigenvalues of the
operator F̂ .
The relations

x̂ = x , p̂x = −ih̄ ∂

∂x
are assumed (postulated) as well as analogous ones for y and z components.
Operators of remaining physical quantities, that have classical analogues,
are determined according to the expressions in classical physics (here mech-
anics) using the components of coordinates and momenta.
Remark 1: The property that F can only acquire the values that are eigenvalues of the
respective operator, must be understood in the sense that each individual measure-
ment of the quantity on a particular quantum-mechanical system can only give some
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of the eigenvalues of F̂ as a result. The average value can, of course, be different. It
goes in the same way as in the case of the bag with the coins (sec.1.2.1): Each time we
reach into a bag for a random one coin, we will necessarily select only the monetary
value that is minted on the coins, e.g. 50 cents (which in our comparison corresponds
to one of the eigenvalues). But when we make an average of many pulls, the average
financial value can be e.g. 73 cents, a value that no single coin has. Additional related
supporting argumentation for the 2nd postulate is provided in Appendix A.1. The ar-
gumentation can be found in the literature as well, for instance in [2].
Remark 2: In a case of a many-particle system, there would be integrations over co-
ordinates of the additional particles of the system in (14).

1.3 The Third Postulate ofQuantum Mechanics

If a state described by a wave function ψ1(r⃗, t) exists as well as a state
described by ψ2(r⃗, t), then the state

ψ(r⃗, t) = c1ψ1(r⃗, t) + c2ψ2(r⃗, t) , c1, c2 ∈ C (15)

is also possible in priciple. This postulate is called the superposition principle.
Whether this or that superposition state is experimentally achievable, however, is a
different matter. The postulate should be understood that in a theory we can work
with any such superposition states.

1.4 The Fourth Postulate ofQuantum Mechanics

According to the 2nd postulate of QM, we know how to construct the operator of
the energy of a particle in an external field. We call it Hamilton’s operator, in short
Hamiltonian. If the particle is in an external field with the potential energy V (r⃗, t),
then its Hamiltonian is

Ĥ = − h̄2

2m
∆+ V (r⃗, t) (16)

Thus, the potential energy may be time-dependent. A typical situation of this kind is
an atom placed in the field of an electrmagnetic (EM) wave. As some other example, we
have had the time-independent potential energy V (r⃗) = qU(r⃗), pozri (9). The fourth
postulate of QM says:

The equation of motion for the wave function of a state is the Schrödinger
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equation.

ih̄ ∂
∂t
ψ(r⃗, t) = Ĥψ(r⃗, t) (17)

where Ĥ is the Hamiltonian of the given quantum-mechanical system.

It means that if we know a state wave function ψ(r⃗, t0) (at certain time t0), then, by
solving the Schrödinger equation (SchE), we are able to determine the state wave func-
tion ψ(r⃗, t) at any later time t.

It is easy to convince that the SchE is consistent with the superpositon principle:
If wave functions ψ1(r⃗, t) and ψ2(r⃗, t) are solutions to the SchE, then also any linear
combination of them is a solution [see also (15)].

2 Stationary states (a brief reminder)

Consider a physical system with a time-independent Hamiltonian Ĥ . Let un(r⃗) be
some of its eigenfunctions and En its respective eigenvalue, that is the eigenenergy:

Ĥun(r⃗) = Enun(r⃗) (18)

Suppose we prepare the QM system at time t = 0 in this very state:

ψ(r⃗, 0) = un(r⃗)

How the state of the systemwill evolve in time? By substituting into the time-dependent
SchE (17), we can easily make sure that the function

ψ(r⃗, t) = un(r⃗) exp
(
− i
h̄
Ent

)
(19)

is solution of the equation. It means that up to a periodically oscillating phase factor
exp

(
− i

h̄
Ent
)
(the absolute value of which does not change) is the state always the

same: un(r⃗). Therefore, eigenstates of a Hamiltonian of given physical system are
called statioanry states. Their time evolution just described is called free time evolution.

Equation (18) is often called the time-independent Schrödinger equation or the stationary
SchE.
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3 (Non)-commuting operators and the uncertainty rela-
tion

We have learnt that in QM, operators are assigned to classical quantities such as
the position vector or momentum, (the correspondence principle). Numerical values
of the quantities in QM are obtained using averaging, for instance

x̄ =

∫ ∞

−∞
ψ∗(x) x̂ ψ(x) dx , p̄x =

∫ ∞

−∞
ψ∗(x) p̂x ψ(x) dx (20)

While the numbers commute among themselves when multiplied, it may not be the
case with operators:

x̂p̂x − p̂xx̂ = ih̄

We know the notion of a commutator : e.g. [x̂, p̂x] = ih̄. We have also learnt that
eigenfunctions and eigenvalues of the operators (those that correspond to physical
quantities) are important in QM because experimental measurements of some quantity
can only yield one of the eigenvalues of the corrsponding operator as a result. For
example, we have the operator and equation

Ĥψn(x) = Enψn(x)

for eigenenergies of some given system. In the following subsection, we will discuss
commuting operators. In another subsection, we will briefly discuss non-commuting
operators.

3.1 Common Eigenfunctions of Commuting Operators

The goal of this section is to prove (at least partially) a very important statement
saying that commuting operators have common eigenfunctions (not eigenvalues). We
will use this property, for example, in our search for the eigenfunctions of the hydrogen-
atom and like ions Hamilton operator. We will demonstrate the proof of the statement
at least for the case of the simple situation of non-degenarate spectra of the operators.
at least

The Case of Non-degenerate Spectra

Theorem 6: Assume that operators Â and B̂ commute and both have non-
degenerate spectra. Then any eigenfunction ofA is also an eigenfunction to
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(of) B and vice versa (i.e. any eigenfunction of B is also an eigenfunction
to A).

Proof: Let Af = af . Act with the operator B from the left side:

B(Af) = B(af) ; komutujú ⇒ A(Bf) = a(Bf)

It means that the function
Bf ≡ f ′ (21)

is also an eigenfunctions of the operator A,

Af ′ = af ′

and it even corresponds to the same eigenvalue as the function f . Because the operator
A has, according to the assumption, a non-degenerate spectrum , f ′ can differ from f
at most trivially, i.e. by an unessential constant multiple:

f ′ = cf (22)

Thus, f and f ′ are essentally the same eigenfunctions of the operatorA. By combining
equations (21) and (22), we obtain

Bf = cf

meaning that the function f is an eigenfunction of the operator B as well, what was
to be proved.

Remark: Thus, commuting operators have common eigenfunctions, not eigenvalues.

The Case of Degenerate Spectra

We should now prove an analogue of the above theorem for the general case, i.e.
the case when Â and B̂ may have degenerate spectra.

Theorem 7: If operators Â and B̂ commute, then it is possible to construct
a complete set of their eigenfunctions such that they are common to both
these operators. There is also the statement valid in the reverse direction:
It operators Â and B̂ have common eigenfunctions and if these eigenfunc-
tions form a complete system, then the operators Â and B̂ commute. [2, 3].

The proof is not difficult to understand. It is only more lenghty and it uses some know-
ledge from algebra. Essentially, it is done by constructings the common eigenfunc-
tions. We will not do it but we will keep in mind the content of the theorem.
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3.2 The Uncertainty Relation

We just recall what you should know from the course of Quantum Mechanics.

Let F andG be physical quantities with operators F̂ and Ĝ. In case that the commutator
of F̂ and Ĝ is non-zero, the two quantities are incompatible, i.e. we cannot measure them
at the same time with arbitrary precisions.

Briefly, if [F̂ , Ĝ] ̸= 0 then F and G cannot both be determined accurately. There will
be some uncertainty in F or in G or (most likely) in both.

For example,
∆x∆px ≥ h̄

2
(23)

This is a principal equality which can be derived with the help of considerations about
wave packets, or using a more formal and more general approach [2, 3]. Therefore,
the uncertainty relation (23) cannot be understood in terms of some imperfection of
experimental apparatus, but as a fundamental property of particles. This property
cannot, of course, be noticed on some relatively heavy particles of matter, such as e.g.
a grain of sand, but for very light particles of the microworld, such as e.g. electron,
this uncertainty is significant.

If two operators switch, such as p̂x and p̂y, commute, then in principle it is possible
to measure the corresponding quantities with arbitrary precision, i.e. with zero uncer-
tainties (if we disregard the imperfections of measuring instruments). Also formally,
the inequality

∆px ∆py ≥ 0 (24)
can be derived for such (commuting) operators [2, 3]. Obviosly, it does not put any
bound on the (always non-negative, of course) uncertainties ∆px, ∆py.

4 Angular Momentum in Quantum Mechanics

Angular momentum (AM) is an important quantity already in classical mechanics.
It is such because it belongs to the integrals of motion, which are the quantities not
changing their value (while the system is a closed, i.e. an isolated one). Integrals, i.e.
constans ofmotion (in classical mechanics) are the total mechanical energy of a system,
its total momentum and the total angular momentum. As we will see, in QM the AM
is even a more important quantity, so it is worth dealing with it. Knowledge about the
AMwill be a springboard to the study of motion of a particle in a spherically symmetric
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field – hydrogen atom for example. In the next chapter we will wish to determine
eigenfunctions of Hamiltonian of such a particle. For the sake of motivation, let us go
a little ahead of the exposition and say that theHamiltonian for a spherically symmetric
field commutes with the operators describing the angular momentum. Therefore, if we
find proper eigenfunctions for, e.g. the operator of the quadrat of the AM, then they
might also be eigenfunctions for the particle in the spherically symmetri field.

4.1 Definitions and Basic Commutation Relations

Angular momentum of a single classical particle is

L⃗ = r⃗ × p⃗ (25)

According to the correspondence principle, we then construct the corresponding quantum-
mechanical operator

ˆ⃗
L = ˆ⃗r × ˆ⃗p (26)

Its cartesian components are (we will write the z one in detail)

L̂x = ŷp̂z− ẑp̂y , L̂y = ẑp̂x− x̂p̂z , L̂z = x̂p̂y− ŷp̂x = − ih̄
(
x
∂

∂y
− y

∂

∂x

)
(27)

They are all hermitian operators, which is easy to ascertain based on Theorem 3 and
the relations like [ŷ, p̂z] = 0. As an exercise we show that L̂x, L̂y, L̂z do not commute
and that their commutators are

[L̂x, L̂y] = ih̄L̂z , [L̂y, L̂z] = ih̄L̂x , [L̂z, L̂x] = ih̄L̂y (28)

A physical consequence, according to the uncertainty principle, then is impossibility
to know values of two cartesian components of the AM precisely at once. A mathem-
atical consequence according to Theorem 7 formulated above is impossibility to find a
complete system of common eigenfunctions for a pair of operators, say for L̂x and L̂y;
such a system does not exist. Regarding the AM, its magnitude is, however, of interest.
In classical mechanics we would calculate a value L ≡ |L⃗|. In QM it turn out to be
more practicle to calculate the square of the magnite of the AM. Let us thus introduce
the operator of the square of the angular momentum:

L̂2 = L̂2
x + L̂2

y + L̂2
z (29)

And let us explore its commutation properties. As an exercise we prove that

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 (30)
17



For the pair of operators L̂2, L̂x a complete system of common eigenfunctions thus
exists. And so for the pairs L̂2, L̂y a L̂2, L̂z . Wewill be seeking them; it will be sufficient
to do for L̂2, L̂z . Later, they will prove very important in the search of stationary states
(eigenstates) of the hydrogen atom and so on. We will also find the corresponding
eigenvalues which will tell us what can be possible values of, for instance, L̄z or L̄2.

4.2 Spherical Coordinates

Wewill see that it is often easier to work with the AM operators and corresponding
eigenfunctions if they are expresses using spherical coordinates ϑ, φ, r. Let us recall
the transformations formulas:

x = r sinϑ cosφ (31a)
y = r sinϑ sinφ (31b)
z = r cosϑ (31c)

ϑ = arccos
(

z√
x2 + y2 + z2

)
(32a)

φ = atan2 (y, x) (32b)

r =
√
x2 + y2 + z2 (32c)

4.3 Eigenfunctions and Eigenvalues of the L̂z Operator

Let us take any differentiable function f = f(r⃗) and try to express its derivative
with respect to φ:

∂f

∂φ
=
∂f

∂x

∂x

∂φ︸︷︷︸
−y

+
∂f

∂y

∂y

∂φ︸︷︷︸
x

+
∂f

∂z

∂z

∂φ︸︷︷︸
0

According to (27) we have

L̂z = − ih̄ ∂

∂φ
(33)

The equation for the eigenfunctions and eigenvalues (eigensystem) of the operator L̂z

is written as
L̂zΦa(φ) = aΦa(φ) (34)

where according to Theorem 4 a has to be a real number. By substituting for L̂z , the
differential equation (DE)

dΦa

dφ +
a

ih̄Φa = 0 (35)
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is formed. The solution of this equation (found in the exercise) is

Φa(φ) = c exp
(

i
h̄
aφ

)
(36)

where c is an arbitrary complex constant. We can easily be convinced of this solu-
tion by substitution. Given the geometric meaning of the φ angle, we will require the
condition

Φa(φ+ 2π) = Φa(φ) (37)
By using it we get

exp
(

i
h̄
a2π

)
= 1

From this a = mh̄, wherem ∈ Z. So we see that the z component of the AM can only
take on values that are integer multiplies of h̄. The same is of course true also for the
x and y components. (These axes are mutually equivalent to the z one by their nature;
it is sufficient to rename the axes and we get x from z, for example.) As it is seen as
well, the eigenvalues of the L̂x, L̂y, and L̂z operators are non-degenerate.

We usually choose the value of the constant c by convention so that the normal-
isation ∫ 2π

0

Φ∗Φ dφ = 1 (38)

is satisfied, which gives (if we want c to be a real and positive constant) c = 1/
√
2π.

Let us summarise:

L̂zΦm(φ) = mh̄Φm(φ) , where Φm(φ) =
1√
2π

e imφ , m ∈ Z (39)

The eigenvalues of the operator L̂z are thus non-degenerate. We can also easily see
that the corresponding functions are – as it should be also according to Theorem 5 –
orthogonal to each other (verified in the exercise):∫ 2π

0

Φ∗
m(φ) Φm′(φ) dφ = δmm′ (40)

Approaching the end of this section, it is suitable to say that if we already have found
expression (39) for the eigenfunctions of L̂z , then it is easy, with the help of the Euler
formula and the relations (31a), (31b), (31c) between sperical and cartesian coordnates,
to reexpress the expression in cartesian coordinates (derivation done in the exercise):

Φm(φ) ≡ f (z)
m (x, y) =

1√
2π

(
x+ iy
x− iy

)m/2

(41)
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The expressions for the eigenfunctions of L̂x a L̂y in terms of cartesian coordinates can
now be immediatelly obtained by the cyclic permutation of the coordinates in (41). L̂x

There is no such symmetry or equivalence within the three spherical coordinates
as it is within the cartesian ones. Therefore the eigenfunctions of the operators L̂x and
L̂y in spherical coordinates will not have expressions of the same form as in the case
of the operator L̂z It would however be easy to find expressions for the operators L̂x

and L̂y in spherical coordinates since we know, from the exercise, their expressions of
the kind (41) in cartesian coordinates.

4.4 Common Eigenfunctions of Operators L̂z a L̂2 (Part 1). Separa-
tion of Variables in Spherical Coordinates

Finding eigenfunctions is related to finding of eigenvalues and therefore it will be
helpful for us to determine what can in QM be magnitude of the angular momentum
(or its square). In this section, however, we will only suggest one procedure, a basic
one, based on solving a partial differential equation, a bit ”heavy-footed” compared to
another method and at the same time less general.

We will use the commutation

[L̂2, L̂z] = 0 (42)

fromwhich, according to eitherTheorem 6 orTheorem 7 implies that the two operators
have common eigenfunctions. So first let us see if the functions exp( imφ), which are
the eigenfunctions of L̂z , happen to be eigenfunctions for L̂2 as well. The expression

L̂2 = −h̄2
[

1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2

]
= −h̄2∇2

ϑ,φ (43)

for the operator L̂2 in spherical coordinates (will be explained in exercises) will serve
us in this. Let us note that there is no r in this expression. L̂2, however, depends also
on the spherical angle ϑ and so its eigenfunctions will in general depend on this angle
as well. Therfore the simple functions exp( imφ) (depending on φ only) will not be
eigenfunctions of L̂2. But how to understand this knowing the fact that the operators
L̂2 and L̂z commute? The only possible explanations (with respect to Theorem 6) is
that L̂2 has a degenerate spectrum (and we will convince ourselves in detail that it is
so). But, on the other hand, we have proved that any eigenfunction of L̂z must contain
the factor exp( imφ). So the eigenfunctions of L̂z such that they are at the same time
also eigenfunctions of L̂2, must take the form

K(r, ϑ) e imφ (44)
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where K(r, ϑ) is a function of its two variables. Let us notice that the expression (44)
is an eigenfunction of the operator L̂z for arbitrary chosen function K(r, ϑ). We can
easily be convinced of this by substituting (44) into (34). And also note that the de-
pendence on r in (44) is not necessary, because r is not found neither in the expression
for L̂z nor in L̂2. The angle ϑ must, however, in general be there, since it enters the
operator L̂2. The equation

L̂2Y m
l (ϑ, φ) = λlmY

m
l (ϑ, φ) (45)

must therefore be solved, together with the already partially solved equation

L̂zY
m
l (ϑ, φ) = h̄mY m

l (ϑ, φ) (46)

for the (at this point) unknown common eigenfunctions for which we however know,
using formula (44), that it must be possible to express them in the separated form3

Y m
l (ϑ, φ) = Θm

l (ϑ) Φm(φ) (47)

To prevent a misinterpretation: m in Y m
l and in Θm

l is not and exponent but a su-
perscript. λlm are still completely unknown eigevalues; we only know that thay must
be real. We understand the index m; it is associated with the variable φ. We do not
specify the index l yet, but since we have the new variable ϑ, an index associated with
it will apparently be needed. So let the l is the index and is has to be written at the
function Θ. We have written also the index m to it; we do not know yet if it will be
needed, i.e. if Θ will depend on m (it will). Even if it was not needed, we would not
do anything wrong by writing it there.

As can be easily convinced, and we have already indicated it in between (44) and
(45), the form (47) could be made more complicated by multiplying it by an arbitrary
r-dependent function and such a form would still present a common eigenfunction of
the operators L̂2 and L̂z (because the variable r is just a constant for these operators;
they contain neither derivatives with respect to r nor r itself). Such a multiplication
by an arbitrary r-dependent function would be just an unnecessary complication for
now; we are now trying to find the simplest possible common eigenfunctions of the
operators L̂2 and L̂z . Therefore, have omitted the function K(r, ϑ), which depends
also on the variable r, and replaced it by the function Θm

l (ϑ), which depends on the
only necessary spatial variable ϑ.

3In some literature, for instance in [2], a notation Ylm is being used for these functions. However,
most of today’s sources and literature use the notation Y m

l , while the symbol Ylm is reserved for closely
related so-called real spherical harmonics, which in their essence are the real and imaginary components
of the functions Y m

l .
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The solutions (eigenfunctions) of the form (47) are products of two functions, one
of which only depends on the variable ϑ and the other on φ only. It is therefore a
factorised form of the solution. The variables are separated in it. Therefore, we talk
about separation of the variables.

After substituting the form (47) into eq. (45), we get a differential equation (DE)

we do not even write it (48)

We should now solve the equation to get Θm
l and then the eigenfunctions of the op-

erator L̂2 we are looking for. Such a straightforward approach is especially suitable
when meeting QM for the first time; it employs solving the DE with the aid of the
mathematical analysis aparatus and is rather lengthy. In this course we will better
demonstrate an elegant and much more general akgebraic approach how to determine
the eigenvalues λlm of the operator L̂2. In doing this we will also see that they will not
depend on the indexmwhich means they will be degenerate [because the operator L̂2

will in general have more eigenfunctions Y m
l (ϑ, φ) for a single eigenvalue λl]. In the

above consideration using Theorems 6 and 7, we have already proved the fact that the
eigenvalues will be in some way degenerate. In next section we will in a more general
way demonstrate, how precisely the are degenerate.

4.5 Eigenvalues of the Angular Momenta Operators

It turns out that commutation relations of the form (28) apply not on for the orbital
angular momentum,4 but also for all other angular momenta, for example spin. There-
fore, in QM we distinguish what kind of AM it is: for example the operator (26) is the
orbital AM operator. Spin of a particle is associated with an (unspecified) operator
of spin AM. Sum of the orbital and spin AM is the total AM and it has its operator
as well. We are not going to deal with this now. However, we will perform the fol-
lowing analysis by assuming the validity of commutation relations of the kind (28) and
we will derive consequences almost purely from this assumption. Instead of symbols
such as L̂x, we will use notations Ĵx, Ĵy, Ĵz to emphasize that it does not have to be
just an orbital AM. These three operators will therefore form a vector operator ˆ⃗

J . For
simplicity, we will consider it dimensionless. We make this by choosing h̄ = 1 (or by
omitting h̄). In many literature, if possible, the Planck constant h̄ is also set equal to 1
and is not even written.

4The orbital AM is the usual AM, which is in classical physics calculated as r⃗ × p⃗ and in quantum
physics with the use of the oparator ˆ⃗r × ˆ⃗p.
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Commutation Relations. Let us therefore consider linear hermitian operators for
which commutation relations [2, 3]

[Ĵx, Ĵy] = i Ĵz , [Ĵy, Ĵz] = i Ĵx , [Ĵz, Ĵx] = i Ĵy (49)

apply. These relationships are often taken as the definition of what we consider in QM
to be the angular momentum. Let us define an operator

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z (50)

Exactly as we had above [see (30)], it can be proved here purely on the basis of rela-
tions (49) that (done as an exercise)

[Ĵ2, Ĵx] = [Ĵ2, Ĵy] = [Ĵ2, Ĵz] = 0 (51)

This, according to Theorem 7, means that the eigenfunctions of the operators Ĵz , Ĵ2

can be constructed to be common to both of these operators. However, our task now
will be to find eigenvalues of Ĵz and Ĵ2 in particular and to learn something about
the mentioned eigenfunctions. However, instead of the eigenfunctions labeled as Y m

l ,
we will use a more generally applicable notation |j,m⟩ and we will call this abstract
symbol an eigenvector. For now let us just take it as a notation [2, 3]. So we have to
solve the double task [compare to the pair of equations (45) and (46)]

Ĵ2|j,m⟩ = ηj|j,m⟩
Ĵz|j,m⟩ = m|j,m⟩

(52)
(53)

We do not assume anything about the value of m yet, we just know that it should be
real because of the hermicity assumed above. The same for ηj . We take the index j for
a more general analogue of the index l from section 4.4 about the orbital angular mo-
mentum. By the notation introduced in equations (52) and (53) we already anticipate
(insipred by the knowledge acquired earlier) that the eigenvalues ηj of the operator Ĵ2

will not depend onm. However, we will verify this guessed property by a derivation;
therefore, it will not stay guessed. The independence of the eigenvalues ηj of the op-
erator Ĵ2 onm is on a more general level the same property as is the independence of
the eigenvalues λlm of the operator L̂2 on m. Although without a proof but still with
a sufficient motivation, we have already mentioned the latter independence at the end
of section 4.4. The independence of ηj onmmeans that the eigenvalues of the operator
Ĵ2 (hence also of L̂2) will be degenerate. In solving given task we will really prove it
and we opt to use the simple symbol ηj (i.e. withoutm) already from the start because
it is a practical notation and there will be no need to change it later.
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Raising and Lowering Operators. Let us now define the pair of operators (for the
sake of simple notation we start to omit the hats)

J+ = Jx + iJy , J− = Jx − iJy (54)

Obviously, they are not hermitian operators but it is not a problem. It is useful to know
their commuation properties, for example immediately found relations

[J2, J+] = [J2, J−] = 0 (55)

as well as further ones which we know from exercise:5

[Jz, J+] = J+ , [Jz, J−] = −J− , [J+, J−] = 2Jz (56)

As we will see, the followng additional identities will also be needed (proved in exer-
cise)6

J+J− = J2 − J2
z + Jz (57a)

J−J+ = J2 − J2
z − Jz (57b)

Let us now explore the action of the operators J± on the unknown eigenvectors |j,m⟩.

J+|j,m⟩ def
= |j,m⟩+ , J−|j,m⟩ def

= |j,m⟩− (58)

Let us at first try (and calculate) this:

J2|j,m⟩+ = J2J+|j,m⟩ = J+J
2|j,m⟩ = J+ηj|j,m⟩ = ηj|j,m⟩+

And analogously

J2|j,m⟩− = = ηj|j,m⟩−

Thus, the vectors |j,m⟩+ and |j,m⟩− are also eigenvectors of the operators J2, with
the eigenvalue in both cases being the same ηj as is for the eigenvecor |j,m⟩.

(59)
Examine also the operation

Jz|j,m⟩+ = JzJ+|j,m⟩ = (J+ + J+Jz)|j,m⟩ = |j,m⟩+ + J+m|j,m⟩ =

= (1 +m)|j,m⟩+
5It is easy to show using (54) and (49). For instance, [Jz, J+] = [Jz, Jx + iJy] = iJy + i(− i)Jx =

Jx + iJy = J+.
6This also can be done easily: J+J− = (Jx + iJy)(Jx − iJy) = J2

x + iJyJx − iJxJy + J2
y =

J2
x + J2

y + Jz .
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and analogously also

Jz|j,m⟩− = (−1 +m)|j,m⟩−

Thus, the vectors |j,m⟩± are also eigenvectors of the operator Jz ,
with eigenvalues beingm± 1.

(60)

We already see from the above said, that the operator J2 has a degenerate spectrum,
because, e.g., the three different eigenvectors |j,m⟩−, |j,m⟩ a |j,m⟩+ correspond to
the same eigenvalue ηj . What regards to Jz , let us assume non-degeneracy of its spec-
trum. We have a good motivation for this as its particular example, Lz , has the non-
degenerate spectrum. Later we will convince ourselves about the correctness of this
assumption also for the general AM. Based on the two results framed above, it can
then be said that |j,m⟩+ is (up to a constant) equal to |j,m + 1⟩ and analogously for
|j,m⟩−. We write it as follows:

|j,m⟩+ ≡ J+|j,m⟩ = C
(+)
jm |j,m+ 1⟩ (61a)

|j,m⟩− ≡ J−|j,m⟩ = C
(−)
jm |j,m− 1⟩ (61b)

where C(+)
jm a C(−)

jm are as yet unspecified constants. In the notation as for usual func-
tions, we will express this by equations

Y
(+)
j,m ≡ J+Y

m
j = C

(+)
jm Y m+1

j

Y
(−)
j,m ≡ J−Y

m
j = C

(−)
jm Y m−1

j

The operators J± modify the eigenstates |j,m⟩ by increasing or decreasing the eigen-
valuem: for example, by acting with J+ on state |j,m⟩, we create state |j,m+ 1⟩ (up
to a less significant constant). Therefore, J+ is called the raising operator and J− the
lowering operator.

Determination of the Constants C(±)
jm . Let us try to express the square of the norm

of the functions Y (+)
j,m , i.e. the scalar product7

〈
Y

(+)
j,m

∣∣∣Y (+)
j,m

〉
:∫ [

Y
(+)
j,m

]∗
Y

(+)
j,m dτ =

∫ [
C

(+)
jm Y m+1

j

]∗
C

(+)
jm Y m+1

j dτ =
∣∣∣C(+)

jm

∣∣∣2
7The scalar product S, called also the dot product, of functions f and g is defined by the expression

S =
∫
f∗g dτ , in which the integration goes over the whole range of the variable τ , in which the

functions f and g are defined. In the Diract formalism, the scalar product is written as S = ⟨f |g⟩. The
symbol ⟨f | alone is called bra and |g⟩ is called emphket (from the word brackets).
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We assume that the functions Y m
j (also the vectors |j,m⟩) are normalised to 1. The

scalar product can also be written as follows:∫ [
Y

(+)
j,m

]∗
Y

(+)
j,m dτ =

∫ [
J+Y

m
j

]∗
J+Y

m
j dτ =

∫ (
Y m
j

)∗
J†
+J+Y

m
j dτ =

=

∫ (
Y m
j

)∗
J−J+Y

m
j dτ

We used the fact the the operators J+ and J− are hermitian conjugate to each other
(mutually hermitian conjugate) – it is known from exercises. Preto platí∣∣∣C(+)

jm

∣∣∣2 = ∫ (Y m
j

)∗
J−J+Y

m
j dτ

In the abstract formalism of Dirac bra and ket vectors using the vectors |j,m⟩ we
write it as follows (and let us write it also for the C(−)

jm , what we would derive quite
analogously):∣∣∣C(+)

jm

∣∣∣2 = ⟨j,m|J−J+|j,m⟩ ,
∣∣∣C(−)

jm

∣∣∣2 = ⟨j,m|J+J−|j,m⟩ (62)

From the exercise we know the operator identities (57a) and (57b). Using them we get∣∣∣C(+)
jm

∣∣∣2 = ⟨j,m|J2|j,m⟩ − ⟨j,m|J2
z |j,m⟩ − ⟨j,m|Jz|j,m⟩ = ηj −m2 −m∣∣∣C(−)

jm

∣∣∣2 = = ηj −m2 +m

Thus, we find that relations ∣∣∣C(+)
jm

∣∣∣2 = ηj −m(m+ 1) (63a)∣∣∣C(−)
jm

∣∣∣2 = ηj −m(m− 1) (63b)

apply. Their left-hand sides clearly say that the expressions must be non-negative.
Thus (∧ – and, i.e. the conjunct)

ηj ≥ m(m+ 1) ∧ ηj ≥ m(m− 1) , ∀m (64)

This implies limitations onm at given ηj ; the values ofmmust be bounded from above
and below.
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Upper Limit. Generically, however, equation

J+|j,m⟩ = C
(+)
jm |j,m+ 1⟩

applies [see (61a)], which would “want” to increment m without termination. To ter-
minate this climb, C(+)

j,mmax has to be 0 for certain mmax. Eq. (63a) then implies that
ηj = mmax(mmax + 1). Note that now we are using the symbol j only in the meaning
of an index, both in the eigenvalues etaj and in the eigenfunctions Y m

j (and in the case
of the abstract notation also in the eigenvectors |j,m⟩). However, we have not yet
assigned any value to the j index; the index itself alone does not enter any formula,
that is it is an unused symbol. So let’s start using it instead of the lengthymmax:

j ≡ mmax (65)

The consequence of eq. (63a) is then written shorter:

ηj = j(j + 1) (66)

From the above exposition, it is reaaly possible to observe [see eq. (63a)] that, if, by
subsequent incrementing of the number m, we were proceeding higher and higher
(from the vector |m⟩ going to |m + 1⟩ etc), then this climb would be stopped since
C

(+)
jj = 0. at the value ofm = mmax ≡ j

Lower Limit. Generically, relation

J−|j,m⟩ = C
(−)
jm |j,m− 1⟩

applies as well [see (61b)], which, on the other hand, would “want” to decrement m
without termination. To terminate this steping down, C(−)

j,mmin
has to be 0 for certain

mmin. From the second of the inequalities (64) if follows that

ηj = mmin(mmin − 1) (67)

that is
m2

min −mmin − j(j + 1) = 0

The solutions of this quadratic equation are the roots

mmin ∈ {j + 1,−j}

The second of them is obviosly the one we need. Thus

mmin = −j

In the end, let us recall: just as the vanishing C(+)
j,j stopped us as we went up the

“ladder”, so now (when we move down) we have C(−)
j,−j = 0 instead.
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Eigenvalues. Thus, for given ηj (equivalently for given j), the following values ofm
are possible:

m ∈ {−j,−j + 1, . . . , j} , i.e. 2j + 1 values

The number of values must definitely be a non-negative integral number (integer), and
in this particular case the number is at least 1. Therefore, 2j is a non-negative integer ;
hence j is a non-negative integer or half-integer.
and m are integral numbers or half-integers .

So let us summarize what we have found:

J2|j,m⟩ = j(j + 1) |j,m⟩
Jz|j,m⟩ = m |j,m⟩

(68)

j ∈ {0, 1, 2, . . . }, or j ∈
{
1

2
,
3

2
,
5

2
, . . .

}
, m ∈ {−j,−j + 1, . . . , j}

So, we have determined the eigenvalues of the operators J2 and Jz . We see that the
eigenvalues of the operator J2 are degenerate, because for one j we have 2j + 1 of
differentm values, and thus so many different eigenvectors.

Thus, by a purely algebraic procedure, we obtained the eigenvalues of the corres-
ponding operators from the postulated (but at least in the case of the orbital angular
momentum justified) commutation relations. While for the orbital angular momentum
we got the integral numbers m as the eigenvalues of Lz , we have derived at least
the mathematical possibility of half-integral ms from relations (49). The question is
whether such a mathematical possibility is realised somewhere in nature. Experiments
answer yes. This possibility is realized in the case of the spin AM of an electron and
other fermions. Spin is the internal AM of a particle. Different angular momenta of a
system (in the simplest case of a single particle) add up. Therefore also the resulting
(composite, summed up) AM of an electron has a half-integer z component (and thus
also a projection of the AM to any axis since we can choose the z direction arbitrarily).
Let us remind again that each (also a composite) AM in quantummechanics must obey
the commutation relations of the kind (49). That this is the case is shown in particular
by the agreement of the experiments and the theory built on this assumption.

Phase Convention. We have not yet found any specific expressions for the eigen-
vectors |j,m⟩, nor unambiguous values of the constantsC(±)

jm , only the squares of their
absolute values. The phase (argument) of these constants cannot be unambiguously de-
termined; it just needs to be defined. Most often we choose it to have the constants
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Figure 1: A scheme of the common eigenvectors of the operators J2 and Jz for the
lowest integer j’s.

real and positive. Thewe get the following formulae expressing the action of the rasing
and lowering operators [see also (61) and (66)]:

J+|j,m⟩ =
√
j(j + 1)−m(m+ 1) |j,m+ 1⟩

≡
√

(j −m)(j +m+ 1) |j,m+ 1⟩

J−|j,m⟩ =
√
j(j + 1)−m(m− 1) |j,m− 1⟩

≡
√

(j +m)(j −m+ 1) |j,m− 1⟩

(69a)

(69b)

This phase convention is called the Condon-Shortley convention.
A schematic representation of the spectrum of common eigenvectors of the operat-

ors J2 and Jz for some of the lowest integral values of j is shown in Fig. 1. Within each
of the “ladders” we can “move” using the action of the rasing and lowering operators
J±.

4.6 Common Eigenfunctions of Operators L̂z and L̂2 (Part 2)

It is worth remembering that in the general discussion of the AM in the previous
section, the numbers j andm could either be integer or half-integers. The half-interal
ones, as it in QM turns out, are important for the spin AM. Now, however, we resume
the interrupted analysis of the orbital AM, which we in the traditional way started
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in section 4.4. We would complete the traditional approach by solving the par-
tial DE (48) in spherical coordinates ϑ, φ. Although we only started the traditional
approach, we learnt some new things (knowledge). Armed by the knowledge of the
rasing and lowering oparators, we will now complete the analysis of the orbital AM in
a different way.

Instead of the index j, we will be using l for the orbital AM. And what is essential,
we have already found out that we have the integralms in the case of the orbital AM;
see (39). Hence l will also be integers. Instead of the mathematically demanding and
leghty procedure indicated at the end of section (4.4), we are now going to look for the
common eigenfunction of L̂z and L̂2 by exploring the effect of these operators on
polynomials in cartesian coordinates. We know from the exercise that the operator
L̂2 can in cartesian coordinates be reexpressed in the form

L̂2 = (y2 + z2)p̂2x + (z2 + x2)p̂2y + (x2 + y2)p̂2z

− 2(xyp̂xp̂y + yzp̂yp̂z + zxp̂zp̂z) + 2 ih̄(xp̂x + yp̂y + zp̂z)
(70)

from which we easily get the final form

L̂2 = h̄2
[
−(y2 + z2)∇2

x − (z2 + x2)∇2
y − (x2 + y2)∇2

z +

+ 2(yz∇2
yz + zx∇2

zx + xy∇2
xy) + 2(x∇x + y∇y + z∇z)

] (71)

We can see that it contains products of polynomials and partial derivatives and if the
derivative is nth, the multiplying polynomial is of the degree n. This is also the case
with the L̂2 operator:

L̂z = − ih̄(x∇y − y∇x) (72)

For brevity we will set h̄ = 1 in calculations of this section. We will do calculations of
sections 4.6.1 and 4.6.2 as an exercise.

4.6.1 Action of L̂z and L̂2 on Polynomials f = ax+ by

It is a homogeneous polynomial of the 1st degree (sometime perhaps called a linear
form).

Action of L̂z. Let us thus first try to explore what we get by acting of L̂z on such a
polynomial; x and y are cartesian coordinates, i.e. real quantities. As yet a and b are
arbitrary constants.

L̂zf = − i(x∇y − y∇x)(ax+ by) = − i(−ay + bx) = − ibx+ iay
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We got a polynomial somehow resembnling the original f . We have to solve (among
other things) the problem

L̂zf = λf (73)

with λ being an eigenvalue. We have already solved this task in section 4.3, but the
functions found there were eigenfunctions of L̂z only, not of L̂2. Therefore we are now
solving the problem again and other way. Upon substituting of what we got few lines
above into equation (73), we get

− ibx+ iay = λax+ λby

This equation has to apply for aby point in space, that is also for any real x and y. So
we obtain equalities

− ib = λa , ia = λb

⇒ b = iaλ , ia = iaλ2 (74)

Therefore
if a ̸= 0 then λ2 = 1 (75)

For a ̸= 0 we have thus found eigenvalues λ ∈ {+1,−1} of the operator L̂z and
eigenfunctions (in the form of polynomials)

f = ax+ iλay = a(x+ iλy) = ar sinϑ (cosφ+ iλ sinφ) = ar sinϑ e iλφ (76)

The eigenvalues±1 really belong to the set of those that we have found for the operator
L̂z in section 4.3. We have there determined the form K exp( iλφ) for the eigenfunc-
tions, with K being anything independent on the angle φ. And it is really so: the
multiplicating factor ar sinϑ does not include φ. What if we had a = 0? Then we
would have b = 0 and would obtain a trivial function identically equal to zero. It is an
uninteresting solution as it does not bring any information.

Action of L̂2. Let us now act on the given polynomial by the operator of the square
od the AM, expressed in the form (71). We easily obtain the results

L̂2f = 2(x∇x + y∇y + z∇z)(ax+ by) = 2ax+ 2by = 2f (77)

We see that this polynomial is an eigenfunction for L̂2 even for arbitrarily chosen a, b.
The corresponding eigenvalue is the number 2. (Writing also h̄, it would be 2h̄2.)
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Preliminary Summary for the Homogeneous Polynomials of the 1st Degree. Of
course, if we want the polynomial f to be an eigenfunction for both the operators,
we have to restrict a and b by the condition (74): b = iaλ. And let us note that the
eigenvalue 2 is just l(l + 1) for l = 1. This l and the eigenvalues λ = ±1 determined
few lines above agree with the result (68) (in which j andmwere used instead of l and
λ). We can write the equations solved here and the solutions found now as follows:

L̂2f1,+1 = 2 f1,+1 , L̂2f1,−1 = 2 f1,−1 , L̂zf1,+1 = +1 f1,+1 , L̂zf1,−1 = −1 f1,−1

or, more briefly,

L̂2f1,±1 = 2 f1,±1 , L̂zf1,±1 = ±1 f1,±1 (78)

where
f1,±1 = a(x± iy) = ar sinϑ e± iφ (79)

Instead of flm, we almost could use the already introduced general notation Y m
l ac-

cording to (47). We will not do it because the functions flm do not have the proper
normalisation constants which are being used for Y m

l ; flm even include the depend-
ence on the spherical variable r and we know that this one does not have to be there;
aiming to determine as simple common eigenfunctions (of the operators L̂2 and L̂z) as
possible, we will remove the r later on. In doing the derivation, it was more practical
to keep r there.

Determination of the Eigenfunction f1,0. We will complete the triplet of the func-
tions f1,m only after f1,0 is determined as well. We have learnt a little bit above [formu-
lae (69)] that once one of the functions flm is known (i.e. for one particular m), then,
using the effect of the rasing and/or lowering operator, we can determine flm for all
otherms. So, let us use the second of those formulae. We get

f1,0 =
1√
2
L̂−f1,+1 (80)

where f1,+1 is given by the expresion (79). To obtain the results, we need to calculate
the effect of L̂− on f1,+1.

L̂−f1,+1 = (Lx − iLy)[a(x+ iy)] =
= a{[− i(y∇z − z∇y)]− i [− i(z∇x − x∇z)]}(x+ iy) =
= a(− iy∇z + iz∇y − z∇x + x∇z)(x+ iy) = a(−z − z) = −2az

Upon substituting into (80), we obtain

f1,0 = −
√
2 az = −

√
2 ar cosϑ (81)
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The Constant a. If one just requires f1,+1, f1,0, f1,−1 to be some common eigenfunc-
tions for L2 a Lz , then the constant a can be an arbitrary complex number and it does
not have to be the same for neither f1,−1, nor f1,+1, neither f1,0. Each of the three
functions can have its own constant: if any eigenfunction is multiplied by any con-
stant, the function remains to be the eigenfunction. The choice of these constants is a
matter a practical convenience and normalisation. In our study of the general AM, we
have introduced the Condon-Shortley convention [see (69)]. In the case of the orbital
AM which we are studying now, we will choose the constants to be consistent with
the Condon-Shortley convention. For example, using a procedure similar to the above
one, i.e. by utilising the action of the lowering opeerator, we easily find out that

f1,−1 =
1√
2
L−f1,0 = −a(x− iy) = −ar sinϑe− iφ (82)

We see that the f1,−1 determined in this way (i.e. in accordance with the Condon-
Shortley convention) has an opposite sign than f1,−1 determined above [eq. (79)].

4.6.2 Action of L̂z and L̂2 on the Polynomials f = ax2 + by2 + cxy

In a way analogous to the one in section 4.6.1, let us now examine the effect of the
operators of the AM on homogeneous polynomial of the 2nd degree (i.e. on quadratic
forms, although the word form may rarely be used in English). We again choose the
forms independent on z, because otherwise they could not be eigenfunctions for L̂z ,
as it is to convince.

Action of L̂z.

L̂zf = − i(x∇y − y∇x)(ax
2 + by2 + cxy) = − i(−2axy + 2bxy + cx2 − cy2)

L̂zf = λf =⇒ 2 i(a− b)xy − icx2 + icy2 = λax2 + λby2 + λcxy =⇒
− ic = λa

ic = λb

2 i(a− b) = λc

Let us first focus on the solutions with λ ̸= 0. They are found to be as follows:

b = −a , c = iλa , λ ∈ {+2,−2}

This gives eigenfunctions of L̂z for λ = ±2 as follows:

f± = a(x2 − y2)± i2axy = a(x± iy)2 (83)
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Action of L̂2. Are the functions just written above eigenfunctions also for L̂2 ? [Look
at the expression (71).] Let us examine it and do it for general a, b, c to have it more
interesting.

L̂2f = [−(y2 + z2)∇2
x − (z2 + x2)∇2

y − (x2 + y2)∇2
z] (ax

2 + by2 + cxy)+

+ 2 (yz∇2
yz + zx∇2

zx + xy∇2
xy) (ax

2 + by2 + cxy)+

+ 2 (x∇x + y∇y + z∇z) (ax
2 + by2 + cxy) =

= −2a (y2 + z2)− 2b (z2 + x2)+

+ 2 cxy+

+ 2 (2ax2 + 2by2 + cxy + cxy) =

= (4a− 2b)x2 + (4b− 2a)y2 − (2a+ 2b)z2 + 6cxy

As we see, not every homogeneous polynomial of the 2nd degree form the title 4.6.2 is
an eigenfunction of L̂2. But if we take those of them which are eigenfunctions of L̂z ,
i.e. those obeying b = −a while c can be arbitrary in this case, we obtain

L̂2f = 6[a(x2 − y2) + cxy] = 6f (84)

For now, we have learnt enough about the polynomials of the 2nd degree. We focused
on the solutions with λ ̸= 0 only. The case of zero λ is not a solution now as it can
easily be found: then we would have c = 0, a = b and such a polynomial would not
be an eigenfunction for L̂2.

Preliminary Summary for Homogeneous Polynomials of the 2nd Degree

L̂2f2,±2 = 6 f2,±2 , L̂zf2,±2 = ±2 f2,±2 (85)

where
f2,±2 = a(x± iy)2 = ar2 sin2 ϑ e± i2φ (86)

and let us note that 6 = l(l + 1) for l = 2.

Determination of the Eigenfunction f2,+1. We already know how to do it: accord-
ing to (69), we obtain

f2,+1 =
1√
4
L̂−f2,+2 (87)
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Hence, we need to calculate

L̂−f2,+2 = (Lx − iLy)[a(x+ iy)2] = a[(Lx − iLy) (x
2 − y2 + 2 ixy] =

= aLx (−y2 + 2 ixy)− iaLy(x
2 + 2 ixy) =

= a[− iz2y + 2 i izx− i(− i)z2x− 2 izy] = 2a(−2 iyz − 2xz) = −4az(x+ iy)

Thus8
f2,+1 = −2az(x+ iy) = −2ar2 cosϑ sinϑe iφ (88)

Determination of the Eigenfunction f2,0. The derivation goes through analogous
steps (using the lowering operator). The result is

f2,0 = − 2√
6
a (x2 + y2 − 2z2) =

2√
6
ar2 (3 cos2 ϑ− 1) (89)

4.6.3 Overall Summary

The eigenfunctions Y m
l sought for are called spherical harmonic functions, or,

more briefly, spherical harmonics. Except for the insignificant factors, they are pro-
portional to the functions flm found above. The eigenfunctions Y l

l , as we have seen,
can be found by examining the effect of the operators Lz and L2 and L2 on polynomi-
als. Y m

l form < l can be determined by application of L−. Thus, we have determined
the solutions – the eigenvalues and common eigenfunctions (at least some of them) –
of the equations

L̂2Y m
l = h̄2l(l + 1)Y m

l

L̂zY
m
l = h̄mY m

l

l ∈ {0, 1, 2, . . . }, m ∈ {−l,−l + 1, . . . , l}

(90a)
(90b)
(90c)

in which we explicitely displayed the the eigenvalues found. Although we have not
calculated it for a general l, we see that obviously (and it is indeed so) the following
will apply:

8Some intermediate calculations and results needed for these and similar calculations will be con-
venient to write:

Lx(x
2) = 0 , Lx(y

2) = 2 iyz , Lx(z
2) = −2 iyz , Ly(x

2) = −2 ixz , Ly(z
2) = 2 ixz

Lx(zx) = − ixy , Lx(yz) = i(z2−y2) , Ly(xy) = − iyz , Ly(zx) = i(x2−z2) , Ly(yz) = ixy
There is no need to calculate explicitely all of the, for several of them can be derived by the cyclic
permutations of the coordinates.

35



• The lowest harmonic: a constant (Y 0
0 ; is can be seen even without calculating).

• We do not put the coefficient rl in the expression Y m
l , because the operators of the

AM do not depend on r.

• The spherical functions, as we see, can be written in the form

Y m
l (ϑ, φ) = Θm

l (ϑ)Φm(φ) (91)

which we have found above [(47)], but we did not know yet, what indices would be at
Θ. The functions Φm(φ) have form (39), which satisfies the standard normalisation
in accordance with (40). We will not write the functions Θm

l (ϑ) alone. Instead, we
directly write the function Y m

l (ϑ, φ) (a little below)

The spherical harmonic functions satisfy the Laplace equation; hence their name “har-
monic”.

Parity. The spherical harmonics with an even l do not change their sign upon the
r⃗ → −r⃗ inversion while those with an odd l do:

Y m
l (−r⃗) = (−1)l Y m

l (r⃗) (92)

Thus, we numerically quantify the parity by values (−1)l.

Orthogonality and Normalisation.∫
Y m∗
l (ϑ, φ)Y m′

l′ (ϑ, φ)dΩ = δll′δmm′ (93)

where dΩ = sinϑ dϑ dφ is an element of the spatial angle and the integration goes
over the entire range.

Completeness. The spherical harmonics form a complete set of functions on a unit
sphere. In other words, any function of the variables ϑ, φ can be expressed as a linear
combination of the sphererical harmonics.

f(ϑ, φ) =
∞∑
l=0

l∑
m=−l

clmY
m
l (ϑ, φ) (94)
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Listing of the Lowest Spherical Harmonic Functions.

Y 0
0 (ϑ, φ) =

√
1

4π
(95a)

Y 1
1 (ϑ, φ) = −

√
3

8π
sinϑ e iφ (95b)

Y 0
1 (ϑ, φ) =

√
3

4π
cosϑ (95c)

Y −1
1 (ϑ, φ) =

√
3

8π
sinϑ e− iφ (95d)

Y 2
2 (ϑ, φ) =

√
15

32π
sin2 ϑ e i2φ (95e)

Y 1
2 (ϑ, φ) = −

√
15

8π
sinϑ cosϑ e iφ (95f)

Y 0
2 (ϑ, φ) =

√
5

4π

(
3

2
cos2 ϑ− 1

2

)
(95g)

Y −1
2 (ϑ, φ) =

√
15

8π
sinϑ cosϑ e− iφ (95h)

Y −2
2 (ϑ, φ) =

√
15

32π
sin2 ϑ e− i2φ (95i)

The following sections of the current paragraph (4.6.3) need to be read carefully and
known about, but you will not have to know how to derive the formulae that appear
here, neither memorise them.

General Formula for the Spherical Harmonic Functions in the Condon-Shortley
Phase Convention [6, 2, 3, 5].

Y m
l (ϑ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cosϑ) e imφ form ∈ {0, 1, . . . , l} (96)
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Evaluations of the spherical functions at negative indices m can be obtained with the
aid of the relation (which we will not prove)

Y −m
l (ϑ, φ) = (−1)m [Y m

l (ϑ, φ)]∗ form ∈ {−l,−l + 1, . . . , l} (97)

Hence, in the Condon-Shortley phase convention, the spherical functions with positive
ms will oscilate withm because of the factor (−1)m. There will be no such oscillations
in the case of the negative-m spherical function. Pm

l (x) is the associated Legendre
function of the degree l and order m. It is defined using the Legendre polynomials
Pl(x):

Pm
l (x) = (1− x2)m/2 dm

dxmPl(x) form ≥ 0 (98)

The Legendre polynomials can be expressed using the relation

Pl(x) =
1

2ll!

dl
dxl [(x

2 − 1)l] (99)

which is the Rodrigues formula.
The Condon-Shortley convention is usual in quantummechanics. Recall that we

have introduced it in relationwith the general angular momentum [equations (69)]. In-
deed, in calculations such as those we did using the lowering operator in sections 4.6.1
and 4.6.2, the same signs of the spherical harmonic functions are obtained as we have
written in the listing (95a)–(95i). To make the convention for the spherical harmonics
completely described, they are defined so that:

• the functions Y l
l for even l are positive, that is, for example, we will have a > 0 in

the formula f2,+2 = a(x+ iy)2 = ar2 sin2 ϑ e i2φ [see (86)],

• the functions will be negative for odd l, see for instance Y −1
1 above.

In literature, one can often see spherical harmonics typed with both their indices
as subscripts (Ylm); this is most frequently being used for the real spherical harmonics,
which are the functions expressed from the real and imaginary parts of the usual (the
complex) spherical harmonics (96). In the book [2], however, this notation is used for
the complex spherical harmonics (96). We can also find formula (96) used for negative
indicesm. This can be done if we, e.g., define the Legendre polynomials for the negative
values ofm too, which would not be difficult [6, 5].

5 Particle in a Spherically Symmetric Force Field

An example is the hygrogen atom in which the electron moves in a coulombic field.
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5.1 General Spherically Symmetric Field

At least at the beginning, we will solve a more general problem, a one with an
almost arbitrary sperically symmetric potential energy. The task is to determine the
eigenenergies and corresponding wavefunctions of such a Hamiltonian [1, 2, 3], i.e. to
find solutions to the equation

Hψ = Eψ (100)
where the Hamiltonian is

H = − h̄2

2m
∆+ V (r) (101)

V (r) is the spherically symmetric potential energy. It is often being called a potential,
but its dimension (units) is that of energy.9 We will show as an exercise that10

[H,Lx] = [H,Ly] = [H,Lz] = [H,L2] = 0 (103)

Therefore, it is possible to find commnon eigenfunctions of chosen three operators, for
instance Lz , L2, H . (We cannot add a fourth one since the cartesian components of L⃗
do not commute.) We will use the selected commutating operators to find solutions
to the problem (100). We have already found the common eigenfunctions for the two
operators, Lz and L2: the spherical harmonic functions Y m

l (ϑ, φ). In order for some
eigenfunction of theHamiltonianH to be also an eigenfunction of the operatorsLz and
L2, the angular dependence of the eigenfunction must remain the same as it is in the
case of the spherical harmonic functions. Therefore, the solutions to the problem (100)
must be sought in the (factorised) form

ψ(r⃗) = R(r)Y m
l (ϑ, φ) (104)

We need to find the unknown functions R(r) and of course also the eigenvalue (en-
ergies) E. For the Laplace operator appearing in (101), it is advantageous to use the
expression using spherical coordinates. (which we will learn about in the exercise):

∆ ≡ ∇⃗2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ (105)

9V (r) differs from a potential by just a constant multiplicator; this can easily be seen if we express
explicitly that it is a potential energy of a point charge q in an electrostatic potential U(r): V (r) =
qU(r). Here U(r) is really a potential, i.e. also by its dimension.

10Using (43), (105) and (106), it can be shown that the Hamiltonian (101) can be expressed in the form

H = Hr +
1

2mr2
L2 where Hr = − h̄2

2mr2
∂

∂r

(
r2
∂

∂r

)
+ V (r) (102)

The AM operators do not depend on r. Then, using also commutation relations of the type [L2, Lx] = 0,
is is easily seen that formulae (103) really apply.
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where
∇2

ϑ,φ =
1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2
(106)

The Laplace operator and the derivatives in it act on functions in the followig sense:

∇⃗2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+ and similarly the remaining terms

We then write our Hamiltonian as follows:

H = − h̄2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ

]
+ V (r) (107)

Substitute the Hamiltonian (107) and the proposed form (104) of the solution into the
stationary SchE (100). We will get the equation (omitting indices l and m and the
function variables)

− h̄2

2m

{
1

r2
∂

∂r

[
r2
∂(RY )

∂r

]
+

1

r2
∇2

ϑ,φ(RY )

}
+ V RY = E RY (108)

We will now use the standard procedure for solving separable differential equations
(DEs): we do the derivatives in this way:

∂(RY )

∂r
= Y

dR
dr

and divide the whole equation by the expression RY . We regroup the terms and get
the equation

1

R

d
dr

(
r2

dR
dr

)
+

2m

h̄2
r2[E − V (r)] = − 1

Y
∇2

ϑ,φY (109)

This is already a differential equation in a separate form, because one group of terms
depends on only one of the variables (r), while the other group depends only on the
remaining variables ϑ, φ. Therefore, no matter how we change e.g. the variable r, the
right side of the equation will certainly not change, and therefore neither its left side.
Thus

− 1

Y
∇2

ϑ,φY = konšt def
= λ (110)

Knowing that [see (43)]
L2 = −h̄2∇2

ϑ,φ

we obtain
L2 Y = h̄2λY (111)
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which is the problem that we already dealt with and solved [results (90a), (90b) and
further in that section]. This time we have “peeled of” the sub-task [equation (111)]
from the larger task – from the problem of the particle in a spherically symmetric field.
After simple rearangements and substiting λ = l(l+1), differential equation (109) then
takes the form

1

r2
d
dr

(
r2

dR
dr

)
+

{
2m

h̄2
[E − V (r)]− l(l + 1)

r2

}
R = 0 (112)

This is sometime called the radial Schrödinger equation. R(r) is the radial wavefunc-
tion. If we do the outer derivative with respect to r in radial SchE (112), we obtain its
other form:

d2R
dr2 +

2

r

dR
dr +

{
2m

h̄2
[E − V (r)]− l(l + 1)

r2

}
R = 0 (113)

This is an ordinary dofferential equation of the 2nd order.

Physical Meaning of the Term with l.

Vl = V (r) +
h̄2

2m

l(l + 1)

r2
(114)

This is an effective potential energy of given particle with inclusion of the contribution
of the centrifugal force. Details can be found in the book [2] and other.

Simplification by a Substitution.

χ(r) = rR(r) (115)

Using this substitution [1], the radial SchE (113) is simplified to11

d2χ
dr2 +

{
2m

h̄2
[E − V (r)]− l(l + 1)

r2

}
χ = 0 (116)

This ordinary differential equation (DE) belong to the class of singular differencial
equations. The total wavefunction for the spherical problem is then, according to (104),
expressed as

ψ(r⃗) =
χ(r)

r
Y m
l (ϑ, φ) (117)

11To obtain it, we need to derived the relations dR
dr = − χ

r2
+

1

r

dχ
dr and also d2R

dr2 =
2

r3
χ −

2

r2
dχ
dr +

1

r

d2χ
dr2 .
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Restriction to Bound States. It is known that problem (100) of a particle in a central
(i.e. a spherically symmetric) field has two kinds of solutions:

• Bound states – these are states, a wavefunction of which is localised around the force
centre which mean that it vanishes are large r: lim|r⃗|→∞ |ψ(r⃗)| = 0. Physically, this
means that there is a high probability of finding the particle near the centre and tiny
(practically zero) find it somewhere far from it.

• Scattering states – these are states, a wavefunction of which is delocalised, that is the
above-written limit is non-zero. Physically, this means that the particle can with a
non-negligible probability be found even at large distances from the force centre

We will discuss further properties of this two kinds of states a little later. However,
we state already here that we will only search for bound states. Their wave functions,
as we have written above, acquire non-negligible values in a certain restricted spatial
domain. Therefore, we require the normalisation condition12

∫
|ψ(r⃗)|2d3r = 1 (118)

to apply. We express the integration element using the spherical coordinates:

d3r = r2 sinϑ dr dϑ dφ = r2dr dΩ (119)

From the normalisation condition (118), and from the conventional normalisation of
the spherical functions,

∫
|Y m

l (ϑ, φ)|2dΩ = 1 [more generally expressed by the or-
thonormality (93)], the following condition for the normalisation of the auxiliary func-
tion χ(r) is obtained: ∫ ∞

0

|χ(r)|2dr = 1 (120)

For such an integral to exists, χ(r) has to converge to zero sufficiently rapidly (for
r → ∞).

Solving Equation (116) in a Neighborhood of the Singular Point r = 0. Assume
that the potential of the given problem fulfills the condition

lim
r→0

[r2V (r)] = 0 (121)

12In the case of scattering states, thewave function could not be normalized to a finite number because
it is not limited to a finite region of space. By convention, we would “normalise” it to the δ function.
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Although this somewhat reduces the generality of the class of potentials being studied,
let’s realize that this is fulfilled for any potential that doesn’t diverge at the origin, and
even formany that diverge. It is especially important that the condition (121) is fulfilled
also by the Coulomb potential for which the potential energy is V (r) ∝ 1/r (i.e. which
diverges at the origin). So, we can neglect some terms in singular DE (116) for r → 0
and obtain the equation

d2χ
dr2 − l(l + 1)

r2
χ = 0 (122)

We try to find a solution of the equation in the neighbourhoud of the singular point
r = 0 in a form of the power series

χ(r) = rα
∞∑
k=0

dk r
k

(The factor rα stands there for a case if the series started from the term rα and it is
practical to be prepared to that in advance.) It we limit our treatment to really very
small r, then it will be sufficient to consider the lowest term of the series: χ = d0r

α.
We substitute it to equation (122) and obtain

α(α− 1) d0 r
α−2 − l(l + 1)

r2
d0 r

α = 0 (123)

and subsequently
α(α− 1) = l(l + 1)

which is a quadratic equation for α (at a given quantum number l). Its solutions are

α1 = l + 1 ⇒ χ ∝ rl+1 , α2 = −l ⇒ χ ∝ 1

rl

We reject the second of these solutions as unphysical, because such a radial wave func-
tion χ(r)/r would certainly be unbounded at r → 0. Therefore

χ = c1 r
l+1 + c2

1

rl
, kde c2 = 0

Solving the Equation (116) for Large r. Assume that the potential energy V of the
particle under study fulfills

lim
r→∞

V (r) = V∞ = const (124)

Then we can neglect the term with 1/r2 in DE (116) and the equation thus take the
form

d2χ
dr2 +

2m

h̄2
(E − V∞)χ = 0 (125)
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This is a linear ordinary DE of the 2nd order with constant coefficients, thus very simple
in its form. During your studies, you probably encountered the equation of this form
many times, for the first time in the study of the linear harmonic oscillator (where the
independent variable was the time t, not the distance r). Thus we know that it is easy
to solve analytically. However, we must distinguish the cases in this equation:

• E − V∞ > 0; The equation is then really the same, from a mathematical point
of view, as the one for a harmonic oscillator, with oscillating solutions, i.e. func-
tions of the type cos kr, sin kr, or, equivalently, e± ikr. k is a real number: k =√

2m(E − V∞)/h̄2. These are functions that definitely do not exhibit localisation
to some finite spatial domain. Therefore, they correspond to the above mentioned
scattering states [see above eq. (118)]. Thus we have just found out the stattering
states have energies greater than V∞. Although the scattering states cannot be
normalised, they are not sheerly unphysical and they are of great importance for
physics. In this course, however, we will not address them in details, as we have
stated it above eq. (118).

• E − V∞ < 0; equation (125) then has solutions in a form of non-oscillating expo-
nential functions. We are going to address these solutions and as we will soon see,
one of them is physical and corresponds to a bound state.

Denote
κ2 =

2m

h̄2
(V∞ − E) > 0 (126)

Then
d2χ
dr2 −κ2χ = 0 =⇒ χ = B1e

−κr+B2 eκr︸︷︷︸
diverguje

=⇒ B2 = 0 =⇒ χ = B1e
−κr

The solution of the form eκr, where κ > 0, is unphysical, because for large r it would
yield infinite values of the wave function. Hence we dropped it. But the solution e−κr

gives a bound wave function which is even localised in the vicinity of the potential
centre. Therefore, this solution corresponds to a bound state. So, with the help of (126)
we found out that bound states have energies smaller13 than V∞.

A classical analogue to our system under study is a body in the gravitational field
of a mass centre: for instance, a planet or a comet in the gravitational field of the

13The usual case is V∞ = 0. For example, the Coulombic potential energy satisfies
limr→∞ q1q2/(4πε0 r) = 0 . Therefore we often say that the bound states have negative energies and
the scattering states positive energies. Let us, however, work with a general V∞ in the case of a general
spherically symmetric potential. V∞.
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Sun, as an (almost) motionless mass centre. If the mechanical (kinetic plus potential)
energy the moving body is negative, the body does not leave the space of the solar
system and it orbits an ellipse around the Sun. This is the case of planets as well as
the periodically returning cometes. If, however, the mechanical energy of the body is
positive, it keeps moving away from the solar system – will not return to it. This is
the case of, e.g., space probes Pioneer 10 and Pioneer 11 to which the so-called escape
velocity was given, sufficient to untie them from the Sun. This is the classical analogue
to a scattering state.

Summary. The radial functionR = χ(r)/r of a bound state in the problem of a spher-
ically symmetric potential has the asymptotic behaviour approximately as follows:

Rl(r) ∝

 rl , r → 0

1

r
e−κr , r → ∞

(127)

where κ is given by formula (126). In deriving these results, we used the assumptions
that the potential energyV (r) around the origin fulfills the condition limr→0 [r

2V (r)] =
0 and that at large distances from the centre limr→∞ V (r) = V∞ = const. l ∈
{0, 1, 2, . . . } is the quantum number following from solving the angular part of the
whole problem formulated by equation (100). We added the quantum number l as an
index to the radial wave function because the function depends on it, as it follows from
the above said. To determine the radial functions completely, we must, of course, spe-
cify a particular form of the potential energy V (r). We will then discover that, apart
from the quantum number l, the radial function will depend on another quantum num-
ber.

It is highlighted above that the asymptotics (127) is only approximate, in a kind of
framework sense. We will see this later in the case of the hydrogen atom, and we may
be able to wonder why the above considerations about asymptotics at singular points
were not entirely consistent.

Thewhole wave function (104), since it is also to have a probabilistic interpretation,
must be normalized to 1, which is expressed by equation (118). And since the spherical
harmonic functions are also normalized to 1 [see (93) for l = l′, m = m′], the radial
wave functions must also be normalized to 1:∫ ∞

0

R2
l (r) r

2 dr = 1 (128)

We have already expressed this equivalently by condition (120) for the chi(r) function.
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5.2 The Hydrogen Atom and Like Ions

This is a particular example of a spherically symmetric force field or a potential; hence
we will discuss this whole section as an exercise.
We now make the potential energy V (r) specific:

V (r) = − 1

4πε0

Ze2

r
(129)

Thus, we take the value of Ze as the nucleus charge; the case of Z = 1 would corres-
pond to the hydrogen atom, the case of Z = 2 to the kation He+ of the helium atom,
to the kation Li2+, etc. To save writing, let’s introduce the notation [2]

e′
2
=

e2

4πε0
(130)

5.2.1 The Eigenenergies and Wavefunctions

The task to be solved is equation (116) for negative energies, for those correspond
to bound states. For the actual potential energy, the constant κ [see (126)] will be
expressed as

κ =

√
2m

h̄2
(−E) (131)

as V∞ = 0 [see (124)]. The constant κ is an inverse length, as for its physical dimen-
sion. Therefore, it will be useful for us to introduce a dimensionless distance from the
nucleus:

ρ = 2κ r =

√
−8m

h̄2
E r (132)

We will now rewrite the DE (116) using the dimensionless distance ρ. Instead of χ =
χ(r), it then becomes convenient to use some other, differently denoted function;14 let
it be χ̃(ρ):

χ̃(ρ) = χ(r) (133)

We express
dχ
dr =

dχ̃
dρ

dρ
dr = 2κ

dχ̃
dρ ,

d2χ
dr2 = 4κ2d2χ̃

dρ2

14In similar cases, a different notation is usually omitted. Strictly, however, a function expressed
using another variable should be labelled differently. So at least now we’re doing it here, though not
elsewhere. This depends on the circumstances when it is appropriate and, conversely, when a different
notation would be a just an unnecessary complication.

46



and obtain the DE (after dividing by the constant 4κ2)

d2χ̃
dρ2 +

[
2mE

h̄24κ2
+

2m

h̄2
Ze′2

2κρ
− l(l + 1)

ρ2

]
χ̃ = 0

We will use the expression for κ according to (131) to cast the equation in the form

d2χ̃
dρ2 +

[
−1

4
− κ
E

Ze′2

2ρ
− l(l + 1)

ρ2

]
χ̃ = 0

This motivates us to introduce also the constant

β = −Ze
′2κ

2E
(134)

the value of which is positive (as E < 0 and which can be, using (131), expressed also
in the form

β =

√
−mZ2 e′4

2Eh̄2
(135)

(See also [2], where this constant is introduced for Z = 1.) So, we finally arrive at a
compact DE

d2χ̃
dρ2 +

[
−1

4
+
β

ρ
− l(l + 1)

ρ2

]
χ̃ = 0 (136)

According to the general15 result (127) and using (115), we already know how its solu-
tions behave at the singular points:

χ(r) = χ̃(ρ) ∝

{
rl+1 , r → 0

e−κr , r → ∞
∝

{
ρl+1 , ρ→ 0

e−ρ/2 , ρ→ ∞
(137)

Of course, we want to find the form of the solution also elsewhere, not only in these
extreme points. So we can look for it in the form

χ̃(ρ) = ρl+1e−ρ/2 v(ρ) (138)

where v(ρ) is some unknown function to be determined. Substitute this Ansatz into
DE (136). After rather lengthy but simple manipulations, we obtain a differential equa-
tion for v(ρ):

ρ
d2v
dρ2 + [2(l + 1)− ρ]

dv
dρ + (β − l − 1)v = 0 (139)

15although that one in some cases is not fully accurate, but it will not matter
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which is no more a singular DE. We look for the solution to it in a form of a power
series

v(ρ) =
∞∑
k=0

ckρ
k (140)

This yields expressions for the derivatives:

v′(ρ) =
∞∑
k=1

k ckρ
k−1 , v′′(ρ) =

∞∑
k=2

k(k − 1) ckρ
k−2

When we substiture all this into the last DE, we get
∞∑
k=2

k(k − 1)ckρ
k−1 + [2(l + 1)− ρ]

∞∑
k=1

kckρ
k−1 + (β − l − 1)

∞∑
k=0

ckρ
k = 0

We now reexpress this equation to the form
∞∑
k=0

[ somethingk ] ρk = 0

This will be possible if we properly shift the summation indices. The resulting equation
will be

∞∑
k=0

{ck+1[k(k + 1) + 2(l + 1)(k + 1)]− ck(k + l + 1− β)} ρk = 0 (141)

For this must hold for any (non-negative) ρ, the coefficient multiplying the expression
ρk has to be zero for each index k. From this finding, we obtain the recurrent formula

ck+1 =
k + l + 1− β

(k + 1)(2l + 2 + k)
ck (142)

So, we succeeded in finding a way how to complete the solution of the DE (139), and
by this also of the whole problem of the hydrogen atom. But will this solution auto-
matically be a physical one? The coefficient ck determined are to be substituted to
series (140). Let us explore if the radial wave function with the v(ρ) determined in the
above way tends to zero for ρ → ∞ as it ought to. For this purpose, let us first see
how the series (140) converges.

ck+1

ck
= [k → ∞] =

1

k
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We know that the same ratio is found also for the exponential function eρ:

eρ =
∞∑
k=0

1

k!︸︷︷︸
bk

ρk ⇒ bk+1

bk
= [k → ∞] =

1

k

It means that the function v(ρ) will behave as an exponential function for large ρ:

v(ρ) ∝ eρ pre ρ→ ∞

Now look at Ansatz (138). We see that for the v(ρ) just examined

χ̃(ρ) ∝ ρl+1eρ/2 for ρ→ ∞

i.e. it diverges. Thus, the determined solution is unphysical. However, the hope of
finding a physical solution will come to life when we realise this: if the coefficient
ck is zero at certain k, then, according to the recurrent formula (142), also all higher
coefficients vanish. By this, the infinite series (140) becomes a polynomial and con-
sequently its values will be quantifiable for arbitrarily large ρ (it will be convergent, in
other words). Denote its degress as nr. Let us examine its asymptotics:

lim
ρ→∞

χ̃(ρ) = lim
ρ→∞

ρl+1e−ρ/2v(ρ) ∝ lim
ρ→∞

ρl+1e−ρ/2ρnr = 0

Thus, such a solution is physical. So, we want

cnr+1 = 0 , cnr ̸= 0 (143)

Recurrent formula (142) applied to k = nr then yields that

β = nr + l + 1 (144)

Looking at the definction of the constant β [formula (134)], we already see that the
eigenenergy E will depend on the indices, that is, it will be quantised. We will make
this more specifice later. As we also see, we got β as a natural number (a positive
integer), since l is a non-negative integer and the degree of the polynomial is

nr ∈ {0, 1, 2, . . . }

Therefore, we have a good motivation to change the notation of β to n:

β = n ∈ N (145)
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Already at this point we can, using (135) and (130), express the eigenenergies of the
hydrogen atom or its like ion16:

En = −m
h̄2

(
e2

4πε0

)2
1

2

Z2

n2
, n = 1, 2, 3, . . . (147)

We have not discussed this expression in connection with the contributions of the
kinetic and potential energy, but you can read something about it in Appendix B, for
example.

The analysis done above [see (144) and (145)] implies that a certain value of the
quantum number n can be obtained from several combinations of the numbers nr and
l. Different nr values imply different degrees of the polynomials, so also different
eigenfunctions. Similarly, different values of l imply different spherical functions, thus
also different eigenfunction too. In other words, the eigenenergy E will be degenerate
(except from the case of n = 1, as we will see). So, the indices are coupled according
to

n = nr + l + 1 , nr, l ∈ {0, 1, 2, . . . } (148)

that is (and for completeness we add also the quantum numbermwhich should not be
confused with the mass denoted by the same symbol)

n ∈ {1, 2, 3, . . . } , l ∈ {0, 1, . . . , n− 1} , m ∈ {−l, −l + 1, . . . , l} (149)

nr = n− l − 1

We now summarise what we have learnt up till now about the eigenfunctions and let
us try to find expression for them. We have found out that the radial function will
depend on the quantum number l; see (127) in the section on the general spherically
symmetric potential energy. Then, in the present section, we discovered that it will
depend also on the quantum number n. Therefore, we will write R(r) = Rnl(r). In
order not to be lost in the sequence of the various substitutions and steps, we first recall
and run through the subsequent expressions (104), (115), (132), (133), (138), (140), (142),

16In Hartree atomic units, e = m = h̄ = 1
4πε0

= 1. Thus, in these units e′2 = 1 and

β =

√
−Z2

2E
, En = −1

2

Z2

n2
, n = 1, 2, 3, . . . , κn =

Z

n
, ρ = 2

Z

n
r (146)

which are often more practical and easier to remember expression; cf. also (151).
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(148) which lead us to the finding a mathematical expression for the wavefunction. By
putting together the appropriate formulae, we get

ψnlm(r, ϑ, φ) = Rnl(r)Y
m
l (ϑ, φ) (150)

The index n is called the principal quantum number; it determines the energy of
the eigenstate. The index l is called the orbital quantum number; it determines the
magnitude of the angular momentum. The index m is called the magnetic quantum
number; it determines the projection of the angular momentum on the z axis (i.e. the z-
component). The scaling constant κ defined by formula (131) depends on the eigenen-
ergy; this dependence can be converted on the dependence on the principal quantum
number:

κ = κn =
me′2

h̄2
Z

n
, ρ = 2κn r (151)

The radial function will then be expressed as

Rnl(r) =
χ(r)

r
= 2κn

χ̃(ρ)

ρ
= 2κn

1

ρ
ρl+1e−ρ/2 v(ρ) = 2κn ρ

le−ρ/2

nr∑
k=0

ckρ
k

t. j.

Rnl(r) = 2κn e
−ρ/2

nr∑
k=0

ckρ
l+k (152)

The above exposition implies that the radial functions Rnl(r) and, of course, the aux-
iliary radial functions χ(r) a χ̃(ρ), can be determined to be real.

Degeneracy of the Levels. Using formulae (147), (149) and (150) we can see that the
level n = 2 is 4 times degenerate17 Generally, the nth level is n2 times degenerate, i.e.
there aren2 mutually linearly independent eigenfunctions corresponding to the energy
level En. (The number n2 is not difficult to calculate. you just have to think about it
and know how to add an arithmetic sequence.) We also see, whence the degeneracy
comes from: a part of it comes originates in the sperical harmonic functions Y m

l , in
which for each l we have 2l+1 different values ofm. This degeneracy is related to the
spherical symetry of the problem under study [2, 3]. The other part originates in the
radial component of the solution, as for one principal quantum number n, we have n
different magnitudes of the angular momentum, thus n different indices l.

17In these considerations, we do not take into account the spin degeneracy. We only consider the
eigenvalues and eigenfunctions of Hamiltonian (101) with the potential energy (129).
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5.2.2 Calculations of the Radial Wavefunctions

In principle, we have already determined the radial wavefunctions by the expres-
sion (152) and by the recurrent formula (142). There are several reasons, why this
is not a final form yet. For example, we have not yet determined the coefficients ck;
we only know that we will have to apply the recurrent formula and surely also the
normalisation condition. We are now going to do these calculations as an exercise.
For this purpose, we first write in one place all needed formulae and quantities in a
convenient form.

The auxiliary constant κn [see (151)] has a dimension of inverse length. There-
fore, it can be very conveniently expressed in terms of the first Bohr radius aB of the
hydrogen atom,

aB =
h̄24πε0
me2

= 0,5291772083 . 10−10 m (153)

or, here even more conveniently, with the help of the generalised first Bohr radius aZ ,
which characterises an hydrogen-like ion with Z protons:

aZ =
aB
Z

(154)

The constant κn can then be expressed as

κn = κn(Z) =
1

naZ
(155)

where we displayed its dependence on the proton number Z . Further formulae needed
are

ρ = 2κnr (156)
χ̃nl(ρ) ≡ χnl(r) = rRnl(r) (157)

We are going to search the radial functions on the space of real functions; we have
found out that it is possible to do so. We will express the normalisation condition, for
instance specifically for the function χ̃nl(ρ), according to (120) by the equation

1

2κn

∫ ∞

0

χ̃2
nl(ρ)dρ = 1 (158)

which is perhaps a most practical one to calculate the coefficients using the normalisa-
tion condition. We will also need the recurrent formula (142), which we now rewrite
using n instead of β:

ck+1 =
k + l + 1− n

(k + 1)(2l + 2 + k)
ck (159)

52



Wewill do our following calculations of the coefficients ck with the use of the functions
χ̃nl(ρ). Thus, according to (157), (156) and (152) we express

χ̃nl(ρ) = e−ρ/2

nr∑
k=0

ckρ
l+k+1 (160)

Wavefunction for n = 1. According to (149), l = nr = 0. Using this we obtain
χ̃ = ρe−ρ/2c0. Using the normalisation condition, we get c0 =

√κ1. We note in
passing that it is worth to calculate integrals of the form

In ≡
∫ ∞

0

xne−x dx = n! (161)

We arrive at the results

R10(r) =

(
1

aZ

)3/2

2 e−r/aZ (162)

Wavefunction for n = 2, l = 0. In this case nr = 1; thus

ψ2,0,0(r, ϑ, φ) = Y 0
0 (ϑ, φ) 2κ2 e

−ρ/2 (c0 + c1ρ) (163)

whereas according to eq. (142) c1 = −c0/2 etc. (An exercise.)

Wavefunctions for n = 2, l = 1. In this case nr = 0; thus

ψ2,1,m(r, ϑ, φ) = Y m
1 (ϑ, φ) 2κ2 e

−ρ/2 c0 ρ (164)

atď. (An exercise.)
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Listing of the Lowest Radial Functions for a Hydrogen-like Ion with the proton
numberZ. (This includes also the hydrogen atom itself as the particular case of Z =
1.)

R10(r) =

(
1

aZ

)3/2

2 e−r/aZ (165a)

R20(r) =

(
1

2aZ

)3/2(
2− r

aZ

)
e−r/(2aZ) (165b)

R21(r) =

(
1

2aZ

)3/2(
r

aZ
√
3

)
e−r/(2aZ) (165c)

R30(r) =

(
1

3aZ

)3/2

2

[
1− 2

3

r

aZ
+

2

27

(
r

aZ

)2
]
e−r/(3aZ) (165d)

R31(r) =

(
1

3aZ

)3/2
4

9

√
2

(
1− 1

6

r

aZ

)
r

aZ
e−r/(3aZ) (165e)

R32(r) =

(
1

3aZ

)3/2
2

27

√
2

5

(
r

aZ

)2

e−r/(3aZ) (165f)

6 ApproximateMethods of Solving the Stationary Schrö-
dinger Equation for Bound States

Thus, the task is to solve the problem [1]
Ĥun(r⃗) = Enun(r⃗) (166)

where Ĥ is a time-independent Hamiltonian of a system. Now we use symbols un(r⃗)
for its eigenfunctions. To keep the notation simple, we limit our treatment to one-
particle systems; the principle of the method can, however, be directly generalised to
many-particle systems.

6.1 The Variational Method

Definition 7: A function f(r⃗) is called quadratically integrable if∫
|f(r⃗)|2 d3r <∞

54



(The integration is taken over the entire space.) In other words, f is a normalisable
function.

Theorem 8 (the variational principle): Assume that Ĥ is a hermitian operator
with a discrete spectrum with the lowest eigenvalue being E0. Let the ei-
genfunctions of the operator Ĥ form a complete orthonormal system (set).
The following inequality then holds for arbitrary quadratically integrable
function f(r⃗) ∫

f ∗(r⃗)Ĥf(r⃗) d3r∫
f ∗(r⃗)f(r⃗) d3r

≥ E0 (167)

Proof: In accordance with (166), we denote the eigenfunctions and eigenvalues of the
operator Ĥ as un(r⃗) and En. The assumed completeness of the set of the functions
un(r⃗) in other words mean that any function can be expressed as their linear combin-
ation. Exactly in this way we do with the function f(r⃗): rozvinieme ju podľa sústavy
vlastných funkcií operátora Ĥ . we will expand it in a series By convention, we will
be using the indexing of the eigenfunctions and eigenvalues so that they would start
from n = 0 (the lowest eigenvalue) and E0 ≤ E1 ≤ E2 ≤ . . . . Individual eigenvalues
may also be degenerate, i.e. some of them may be equal each other. The expansion
under consideration then reads

f(r⃗) =
∞∑
n=0

cnun(r⃗) (168)

The orthonormality of the eigenfunctions of the operator Ĥ assumed by the theorem
is expressed as ∫

u∗m(r⃗)un(r⃗) d3r = δmn (169)

We can similarly expand

f ∗(r⃗) =
∞∑
n=0

c∗nu
∗
n(r⃗)

Substitute now these expressions into the left-hand side of the variational principle (167).
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Calculate∫
f ∗(r⃗)Ĥf(r⃗) d3r =

∞∑
m=0

∞∑
n=0

c∗mcn

∫
dr3 u∗m(r⃗)Ĥun(r⃗) = [see (166)] =

=
∞∑

m=0

∞∑
n=0

c∗mcn

∫
dr3 u∗m(r⃗)Enun(r⃗) = [the orthonormality] =

=
∞∑
n=0

|cn|2En

Now we can immediatelly write also the results for the denominator of the variational
principle (167): ∫

f ∗(r⃗)f(r⃗) d3r =
∞∑
n=0

|cn|2

It is obvious that

E0 ≤ E0

E0 ≤ E1

. . . . . .

E0 ≤ En

. . . . . .

Wemultiply each of these inequalities by its respective |cn|2. We then add the inequal-
ities together. In this way we get

E0

∞∑
n=0

|cn|2 ≤
∞∑
n=0

En|cn|2

i.e.

E0 ≤

∫
f ∗(r⃗)Ĥf(r⃗) d3r∫
f ∗(r⃗)f(r⃗) d3r

what needed to be proved.

Remark: If we were interested how to calculate (at least formally) the coefficients cn in
the proof just done, we would take equation (168), multiplied it by the function u∗m(r⃗)
and integrate over the integration domain. Using the orthonormality (169), we would
obtain the expression

cn =

∫
u∗n(r⃗)f(r⃗) d3r
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Coefficients are being expressed in this way very often in quantum physics and espe-
cially in studies of electronic structure,

How to determine the eigenfunctions and eigenvalues using the variational prin-
ciple (167)? The principle itself does not provide any result for the functions nd values.
We can, however, construct a trial function f(r⃗, α1, α2, . . . , αp) ≡ f(r⃗, α), in which
α ≡ (α1, α2, . . . , αp) are some parameters. We substitute the function into the left-
hand side of the variational principle (167). By doing this, we get a function F which
depends on the chosen parameters:∫

f ∗(r⃗;α)Ĥf(r⃗;α) d3r∫
f ∗(r⃗;α)f(r⃗;α) d3r

= F (α1, . . . , αp) (170)

We determine such values of the parameters αj , at which the function f has its global
minimum. Let us denote them by α̃1, . . . , α̃p. In this way, we managed to approach
the unknown exact lowest eigenenergy E0 as much as possible for the proposed form
of the trial function. We will declare that the lowest of the values F we were able
to determine be an approximation to the ground-state energy. It is an upper estimate
for the exact energy. We will declare that the trial function (the one with the optimal
values of the parameters) is an approximation to the ground-state wavefunction.

Although the above method may seem rather crude, it can give excellent results
with a suitably chosen trial function and a sufficient number of parameters. Since we
usually cannot find exact solutions to problem (166) (except for a few cases, such as
the hydrogen atom), we must use approximate methods of solution. It is the variation
method that is used very often, which we will talk about later.

The variation method can also be used to find some of the lowest excited states of
the system (i.e. those that have their eigenenergies greater thanE0). We will show this
for the case when the ground state is non-degenerate (which is a common situation).

Theorem 9: Assume that Ĥ is an operator as in Theorem 8 and that, in ad-
dition, its lowest eigenvalue E0 (the ground state) is non-degenarate and
its respective eigenfunction is u0(r⃗). Let g(r⃗ be a quadratically integrable
function orthogonal to 0(r⃗). The inequality∫

g∗(r⃗)Ĥg(r⃗) d3r∫
g∗(r⃗)g(r⃗) d3r

≥ E1 (171)
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then holds, in which E1 is the energy of the first excited state (and it can
also be degenerate)

Proof: Similarly as in the previous theorem, we expand the function under considera-
tion into a series of the eigenfunctions of the operator Ĥ : Ĥ :

g(r⃗) =
∞∑
n=1

cnun(r⃗)

This time, however, we have omitted the eigenfunction u0(r⃗) of the lowest level from
the linear combination, because according to the assumption, g(r⃗) should be ortho-
gonal to u0(r⃗). (We can easily be convinced explicitely that if we include the term
with c0u0(r⃗) into the summation, the orthogonality∫

g∗(r⃗)u0(r⃗) d3r = 0

would not apply.) We proceed similarly to the previous proof, but with the difference
that we write a sequence of non-strict inequalities.

E1 ≤ En pre n ≥ 1

and again, we apply the summation only from the index 1. In this way we arrive at the
inequality (171) of Theorem 9, what needed to be proved.

Theorem 9 applied to the Hamiltonian operator thus allows us in principle to find
an upper estimate of the eigenenergy of the first excited level and the approximate
wave unction of this level (which can also be degenerate). We need to optimise the
trial function for this calculation, similarly as in the case of Theorem 8. According
to Theorem 9, we construct the function to be orthogonal to the ground state. After
an optimisation, the trial function will become an approximate eigen-wavefunction of
the first excited state. Thus, before calculating the excited state, we need – at least in
principle – to have a determined wave function of the ground state (using a variational
caclulation vased on Theorem 8 for example). Since the wave function of the ground
state is usually only approximately known, the calculation of the excited state in this
way on the basis of the knowledge of the approximate eigenstate will generally be less
accurate than the calculation of the ground state. And it can be seen that similarly we
could look for higher and higher levels (but increasingly less accurate).

However, the specific implementation of the variational method is such that we cal-
culate the ground state and also a certain number of excited states at once, by search-
ing for the whole system of eigenvectors and values of the matrix (we will talk about
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this in section 6.1.1). Then we can achieve that the accuracy of determining the ex-
cited states will be similar for a given Hamiltonian as the accuracy of determining the
ground state (and at the same time such as the numerical diagonalization method used
is able to achieve). However, as we will learn later, in the search for excited states
of many-electron atoms or molecules, we also encounter principally different funda-
mental difficulties, and these in particular will impair the accuracy of the results.

Even degeneracy of any of the levels is not an obstacle to the application of the
variational principle. We have formulated Theorem 9 for the case of non-degenerate
ground state for the sake of brevity and greater clarity only.

In Theorems 8 and 9, we assumed that the spectrum of the operator Ĥ is discrete
and that the corresponding eigenfunctions form a complete set of functions. However,
even this (absolute) completeness is not necessary; if we want to find the wave functions
and energies corresponding to the discrete part of the spectrumby a variationalmethod
(that is bound states, i.e. spatially localized and bounded eigenfunctions), then it is
sufficient that the set of functions un(r⃗) allows to expand in series (168) any spatially
localized function f(r⃗), because we don’t even want to find another one.

Theorems 8 and 9 show us that stationary SchE can be understood as equivalent
to the variational principle. Not only is this an important theoretical knowledge, but
it gives us certainty in practical calculations that we cannot ”shoot under (the target)”
when calculating the energy.

6.1.1 An often used Version of the Variational Method

The trial function is most frequently (especially in numerical calculations on com-
puters) being seached in the form

f(r⃗;α) =

p∑
i=1

αifi(r⃗) (172)

where fi(r⃗) are some known functions. We used a shortcut notation for the set of
the variational parameters on the left-hand side (LHS): α ≡ (α1, α2, . . . , αp). If some
(usually unknown) function is expanded in a series of known functions, the sequence
of the functions [in this case fi(r⃗)] is called a basis set, or briefly a basis. We should
now to minimise the function F (α) defined by fraction (170), that is, to determine
the optimal parameters α̃, for which the function F (α) acquires its minimum value.
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Substituting for f(r⃗;α) gives

F (α) =

∑
i

∑
j

α∗
i Hij αj∑

i

∑
j

α∗
i Sij αj

(173)

where

Hij =

∫
f ∗
i (r⃗) Ĥ fj(r⃗) d3r (174)

Sij =

∫
f ∗
i (r⃗)fj(r⃗) d3r (175)

Hij are the matrix elements of the Hamiltonian in the given basis. Sij are the overlap
integrals, i.e. scalar products. Hence, the basis functions fi neeed not be normalised
to 1. They even need not be (mutually) orthogonal. (If they are, then calculations with
them are simpler, od course.) Since we are in quantummechanics, the function f(r⃗, α)
should be (once the opetimal parameters have been determined) a wave function of the
electron, possibly of some other particle. For this reason, we may already at this point
require its normalisation to unity:∫

f ∗(r⃗;α)f(r⃗;α) d3r = 1 (176)

Therefore, the denominator of fraction (173) has to be 1 for a correct function f(r⃗;α):∑
i

∑
j

α∗
i Sij αj = 1 (177)

However, in doing a minimisation of the function F (α), the trial function f(r⃗, α) is
being varied in a rather arbitrary (e.g. also random) way. These variations would in
general lead to violation of the condition (176). Thus, if we aimed to straightforwardly
minimise F (α) [given by formula (173)], we would relly have to consider and to write
also its denominator.18 However, we better want to avoid this as it woult not be prac-
tical. We prefer to minimise the simplified function

Fčitateľ(α) =

p∑
i=1

p∑
j=1

α∗
i Hij αj (178)

18The denominator corrects for the possible improper normalisation of the function f(r⃗, α) and guar-
antees that the energy is evaluated as if the function f(r⃗, α) was normalised properly.
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while maintaining condition (177). This mathematical task can be solved using the
Lagrange multiplier (LM) method:19 we define the new function

F (α, λ) = Fčitateľ(α) + λ

(
1−

p∑
i,j=1

α∗
i Sij αj

)
(179)

The the yet unknown constant λ is called the Lagrange multiplier. The extrema of the
function F (α, λ) are determined by calculating its partial derivatives with respect to
the particular arguments, which are the (in general) complex parameters αj . It is a set
of p complex variables, i.e. 2p real variables. We decompose each of the αj to its real
and imaginary parts: αj = Xj + iYj . By doing this, we obtain the following equations
(the necessary conditions for the extremum):
∂F

∂X1

= 0 ,
∂F

∂Y1
= 0 ,

∂F

∂X2

= 0 ,
∂F

∂Y2
= 0 , . . . . . . . . . ,

∂F

∂Xp

= 0 ,
∂F

∂Yp
= 0

(180)
It is shown in the short Appendix C that the set of 2p equations is equivalent the set
of 2p equations

∂F

∂α1

= 0 ,
∂F

∂α2

= 0 , . . . . . . . . . ,
∂F

∂αp

= 0 (181a)

∂F

∂α∗
1

= 0 ,
∂F

∂α∗
2

= 0 , . . . . . . . . . ,
∂F

∂α∗
p

= 0 (181b)

in which the partial derivatives with respect to the complex variables αj a α∗
j are used.

We express the function to be minimised by the formula

F (α, λ) = λ+

p∑
i,j=1

α∗
i (Hij − λSij)αj (182)

We could take λ for a variational parameter too. By doing this, we would obtain one
additional equationwith a partial derivative, but this equationwould not yield any new
information. Therefore, the first term (the LM alone) is omitted in the literature [2].
By calculating the derivatives and markinh that they shall be zero, we obtain

∂F

∂αk

=

p∑
i=1

α∗
i (Hik − λSik)

let be
= 0 (183a)

∂F

∂α∗
k

=

p∑
j=1

(Hkj − λSkj)αj
let be
= 0 (183b)

k ∈ {1, 2, . . . p}
19Its principle is nicely geometrically explained form instance in [2].
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The let be
= 0 equations are actually two sets, each of which contains p algebraic linear

homogeneous equations with p unknowns (α∗
i alebo αj). It is convenient to express

these equations in explicit matrix forms and to put the terms with λ to their right-hand
sides. For example, the second part of system (183) can be written as follows:

H11 H12 . . . . . . H1p

H21 H22 . . . . . . H2p

. . . . . . . . . . . . . . .
Hp1 Hp2 . . . . . . Hpp




α1

α2

. . .
αp

 = λ


S11 S12 . . . . . . S1p

S21 S22 . . . . . . S2p

. . . . . . . . . . . . . . .
Sp1 Sp2 . . . . . . Spp




α1

α2

. . .
αp


(184)

It is recommended to write also the first part and in this way to find out that by its
complex conjugation 20 we obtain an equation almost the same as (184); they would
differ only by λ∗ in the second equation instead of λ. But this implies that (if it is
difficult to understand, you really should write both the systems) λ∗ = λ; thus the LM
λ is real.21

Equation (184) has a form of the stationary SchE in a matrix notation using the
considered basis functions fi(r⃗); see (172). From the point of view of the linear al-
gebra, it is a generalised equation22 for the eigenvalues λ and the eigenvectors written
as columns using the quantities αi. (It would be the usual, i.e. not the generalised
problem, if the matrix S was not there, or, equivalently, if it would be the identity
matrix.) After the optimisation, the Lagrange multiplier λ acquires the meaning of
the approximate eigenenergy.23 It would be exact if we used a complete basis, which
would typically mean an infinit number of the basis functions, i.e. a numerically non-
tractable problem. Practically, a finite number p is often sufficient to obtain highly

20To do this, we need to know that H∗
ik = Hki and analogously pre Sik . It follows from Theorem 2

[see (12) and (174)].
21Note also, that even F (α) itself is real according to (170) for example, which is not a surprising

finding, as the numerator is an expectation value of a hermitian operator. And it should be clear now
that F (α, λ) is real too.

22We learnt the generalised eigenvalue and eigenvector problem in the subject Počítačová fyzika. We
formulated it by equation A · x = λB · x. If the matrix B is not a singular one, then this problem can
be transformed to (B−1 · A) · x = λx, that is the usual task to find the eigenveectors and eigenvalues
of matrix B−1 ·A.

23It should be fully obvious in the case of an orthonormal basis; then Sij = δij . However, the LM
(after the optimisation) has the meaning of the approximate eigenenergy even in cases when the matix
S differs from the identity matrix; to understand this, realise that we could obtain equation (184) as
follows, without even using the variational principle: (i) We start from the SchE Ĥψ = λψ, by which
we define that the parameter λ is the eigenenergy. (ii)We express ψ as a linear combination of the basis
functions fj(r⃗) and substitute to the SchE. (iii) We multiply both sides of the equation by f∗k from the
left and integrate. (iv)We write the system obtained in this way in a matrix form. The system will have
the form (184), i.e. the same as would be obtained from the variational principle. Hence, λwill have the
meaning of the approximate eigenenergy also in the equations following from the variational principle.
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accurate results.
The matrix H on the LHS of equation (184) is a matrix form of the Hamiltonian

Ĥ in the considered basis; we often use also the notion of matrix representation of the
Hamiltonian (in given basis). Calculation of eigenvalues and eigenvectors is called
a diagonalisation of a matrix.24 The matrix S is called the overlap matrix for it
expresses how much (if at all) the basis functions overlap each other.

By moving all the terms in (184) to LHS, i.e. to arrange them as they were in (183b),
we arrive at wan equation of the form matrix times vector = zero vektor. A non-zero
solution of the corresponding linear set can only exist, if the determinant of the cor-
responding matrix vanishes:∣∣∣∣∣∣∣∣

H11 − λS11 H12 − λS12 . . . . . . H1p − λS1p

H21 − λS21 H22 − λS22 . . . . . . H2p − λS2p

. . . . . . . . . . . . . . .
Hp1 − λSp1 Hp2 − λSp2 . . . . . . Hpp − λSpp

∣∣∣∣∣∣∣∣ = 0 (185)

It is a pth order algebraic equation, also called the charakteristic equation (of the re-
spective square matrix), or the secular equation. In general, it has p different roots
λ ,

λ1, λ2, . . . , λp (186)

(some of then may be equal). For each λ, we then determine the set of parameters α.
By doing this we obtain the approximate solutions of the given problem (166). The
lowest of the eigenvalues λ1, λ2, . . . , λp is an approximate ground-state eigenenergy
of the given Hamiltonian. The higher eigenvalues correspond to the approximate ei-
genenergies of the excited states.

We could obtain equation (184) even without using the variational theorem as it
was explained in footnote 23. So, what good was the variational principle for us?
Apart other things, it assures us that in our search for the eigenvalues we can not
underestimate the exact ground state energy; see also the comment above the title of
this section (6.1.1).

6.2 The Perturbation Method

Due to lack of time, we will not deal with the perturbation method. In quantum
physics, this is generally an extremely important method. It is used e.g. to describe
atoms and molecules embedded in an external electric or magnetic field, provided that

24This calculation can mathematically be expressed as a matrix operation that results in a transform-
ation of the Hamiltonian into a diagonal matrix diag(λ1, λ2, . . . , λp).
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the external field represents a weak effect compared to the effect of the internal field
of the atom or molecule. If you are interested, you can get acquainted with the per-
turbation method, e.g. in the book [2] or [3]. More advanced formulations of the
perturbation method (e.g. the perturbation method MP2 [7]) are used e.g. also in
quantum chemistry to calculate important corrections to eigenenergies and functions
obtained by other methods (typically by the Hartree-Fock method, which is one of the
variational methods).

7 Internal AngularMomentumand InternalMagnetic Di-
pole Moment of Electron

In this section we will be talking about spin of an electron, which is a short term
for the intrinsic internal angular momentum of an electron.25 It will not be a detailed
discussion as you should already know something about spin from the courseQuantum
Mechanics. It will be a similar dense summarywith an emphasis on some systematics or
order of steps, as we did in Chapter 1 on the postulates of wave quantummechanics. In
wave WM, only one quantum mechanical particle is discussed using a wave function,
and its spin is ignored. In essence, the content of this chapter can be characterized by
adding to the previous four postulates a fifth, which postulates the spin electron and
the method of its description.

7.1 Experimental Facts Confirming Existence of Spin in Quantum
Mechanics

Wefirst recall the usual angularmomentum and the usualmagneticmoment known
from the basic physics course: If a charged particle moves along a circle (or even along
a more complicated loop), it has a corresponding mechanical (orbital) angular mo-
mentum (AM) ℓ⃗ = r⃗ × p⃗ . This movement also creates the corresponding magnetic
dipole moment (briefly magnetic moment, MM) of the magnitude µ = IS, where S is
the loop area and I is the current flowing through this thought circuit. If the charge of
the particle is q and its massm, then the relation between its MM and its orbital AM is

µ⃗ =
q

2m
ℓ⃗ (187)

which can easily be derived [2].
25Other particles may also have their spins, however.
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Experiments show that the electron also has its intrinsic internal angularmomentum
and the corresponding intrinsic or internal magnetic dipole moment. These internal
moments exist regardless of whether and how the electron moves in the space of the
usual coordinates (in the “orbital” space). The internal angular momentum of a particle
is called spin. The mentioned experiments or phenomena indicating the spin of the
electron can be summarized in several groups [1], which we will only briefly list here:

1. fine structure of spectral lines

2. the Stern-Gerlach experiment

3. gyromagnetic phenomena: experiments of Einstein and de Haas

4. magnetooptic phenomena: the anomalous Zeeman effect

The existence of a quantum number associated with the internal state of an electron
was postulated in 1925 by W. Pauli based on the study of atomic spectra. However,
it was not he who introduced the term spin. In the same year, a little later, Kronig,
Uhlenbeck, and Goudsmit interpreted this new quantum number as a manifestation of
the momentum of the electron and introduced the term spin. According to the KUG
hypothesis, a projection of this AM to a chosen axis can acquire two values only: ±h̄/2.
In experiments of the type SG or EdH, it was also possible to measure the magnetic
moment µ⃗s corresponding to the spin and the ratio between µ⃗s and the spin AM s⃗. It
was found that [compare to (187)]

µ⃗s =
q

me
s⃗ , where q = −e, me = the electron mass (188)

So, this (gyromagnetic) ratio is twice of the gyromagnetic ratio for the orbital AM. (It
turns out that the latter ratio is only approximatelly twice of the former one.) By the
“chosen axis” we usually consider the z axis. Therefore, we write that the projection
of electron spin on the z axis is

sz ∈
{
+
h̄

2
,−h̄

2

}
(189)

As in QM we many times use the atomic units in which h̄ = 1, we then say that the
electron spin acquires half-integer values. If we say that electron spin is 1/2, we mean
the magnitude of the spin projection in the units of h̄.

The relation between the MM and AM is often expressed with the aid of the Bohr
magneton µB:

µB =
eh̄

2me
(190)

65



The mechanical (orbital) moment then becomes

µ⃗ = −gL µB
1

h̄
ℓ⃗ (191)

where gL = 1 is the so-called orbital g-factor. Analogously for the spin AM, we express

µ⃗s = −gS µB
1

h̄
s⃗ (192)

where gS ≈ 2 is the spin g-factor.
The theory and a better understanding of spin in the framework of QM was de-

velped by Pauli in 1927. While spin had to be introduced into the standard QM by
the postulating based on experimental facts (and Pauli significantly contributed to this
– the Pauli equation from 1927 is especially known), in relativistic QM developed by
Dirac in 1928, spin follows directly from theory. Spin cannot be satisfactorily inter-
preted as the rotation of a particle about its own axis.

7.2 Eigenvalues and Eigenvectors of Spin Operators

In Section (4.5), we talked about the theoretical description of AM and postulated
that any angular momentum in QMwill be defined so that the relevant operators must
satisfy the commutation relations (49). Using this, we obtained the eigenvalues of
the AM operators according to equations (68) and in addition the knowledge that the
values of the quantum number j can only be non-negative integers or half-integers.
We also found out that if, for some QM system, the highest AM projection on the z
axis is jh̄, then the number of the different projections is 2j +1. The whole procedure
of that section could have been understood purely mathematically. But even in this
early stage of our study we saw its physical realisation: the mechanical (i.e. orbital)
angular momentum in QM. That time we did not know any physical realisation of a
half-integral j. Now, knowing that the spin AM exists and acquires the two values of
the projection, and that they are half-integral, we begin to see that the mathematical
theory of section (4.5) will perfectly suit us to describe electron spin. It is sufficient to
take j = 1/2 = s. Thus, once equations (68) are made specific for the case of electron
spin (and with the explicit writing out of the constant h̄), they become

ŝ2
∣∣∣∣12 ,ms

〉
=

3

4
h̄2
∣∣∣∣12 ,ms

〉
ŝz

∣∣∣∣12 ,ms

〉
= msh̄

∣∣∣∣12 ,ms

〉 (193)
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ms ∈
{
−1

2
,+

1

2

}
These equations also define our notation that will be used below. Instead of the more
generally used symbol j, we will be using s = 1/2 to denote the spin of one electron.
We say that:

ms = +
1

2
. . . . . . spin hore

ms = −1

2
. . . . . . spin dole

Thus, only two linearly independent common eigenvectors of the operators ŝ2 a ŝz
exist: the vectors ∣∣∣∣12 , +1

2

〉
,

∣∣∣∣12 , −1

2

〉
(194)

denoting “spin up” and “spin down”.

7.3 Pauli Matrices

In quantum mechanics, it often proves practical to use matrix formalism. In it,
instead of the notation (194), we use two-component column vectors:∣∣∣∣12 , +1

2

〉
→ χ̃+ =

(
1
0

)
(195a)∣∣∣∣12 , −1

2

〉
→ χ̃− =

(
0
1

)
(195b)

It is a certain particular representation of vectors (194). Then it is natural to expect
that the operators ŝ2 and ŝz , which enter equations (193), will also have some specific
matrix representation (expression), using 2 × 2 matrices. And of course, a matrix
representation will be associated to the operators ŝx and ŝy as well. We denote the
matrix expressions for the operators ŝx, ŝy and ŝz by symbols sx, sy, sz . If we write
these matrix expressions (at least using the symbols), then it becomes easy to construct
the matrix expression of the operator ŝ2:

s2 = s2x + s2y + s2z (196)

We have the folowong requirements for these matrices:

1. They must be 2× 2 (which we already said).
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2. They must be hermitian (because they represent hermitian operators).

3. The (common) eigenvectors of the matrices s2 a sz must be column vectors χ̃+ a χ̃−
defined by formulae (195a), (195b).

4. The have to satisfy commutation relations (49) which are generally valid for AM
operators.

Doing an explicit calculation, one can be convinced that these requirements are ful-
filled by the followong matrices:

sx =
h̄

2
σx , sy =

h̄

2
σy , sz =

h̄

2
σz (197)

where σx, σy, σz are Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
, σz =

(
1 0
0 −1

)
(198)

The distribution of their matrix elements depends partiall on our definition of the or-
dering of the basis vectors. The ordering is by convention such as in (194), i.e. the first
vector is the one with the positive spin, the second with the negative spin. The Pauli
matrices themselves satisfy the commutation relations

[σx, σy] = 2 iσz a cyklicky ďalšie. (199)

The algebra of Pauli matrices can be read in more detail e.g. in the books [2, 3]. For
example, the following identity holds:

σ2
x = σ2

y = σ2
z =

(
1 0
0 1

)
(200)

Then we obtain
s2 =

3

4
h̄2
(

1 0
0 1

)
(201)

[See also the upper equation in (193).]

7.4 Wavefunction of a Spin 1/2 Particle

In the postule no. 1 of the wave quantummechanics, we introduced the wave func-
tion. Now we have to generalise it to be able to describe also the electron spin [1]. We
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consider one particle whose spin value can be generally indefinite, i.e. a superpos-
ition of the spin-up (+1/2) and spin-down (−1/2) state. We shortly call it a state
with uncertain projection of the spin (on a chosen axis which we denote as z). How-
ever, the whole thing is more complicated, because the particle has not only the spin
degree of freedom, but also the translational degrees of freedom (the usual spatial co-
ordinates x, y, z, i.e. the “orbital” degrees of freedom); hence the wave function must
depend not only on the spin, but also on the spatial coordinates. It should also be
noted that even in the case of an indefinite spin, when measuring the projection, we
acquire only the value +1/2 or −1/2.26 The uncertainty lies in the fact that the result
of an individual measurement on a state with indefinite spin is random, it cannot be
predicted.27 If we found out by the detection device that the particle has spin +1/2,
then the space-dependent wave function would be some, let’s denote it φ+(r⃗, t). If we
found spin−1/2, then the spatially dependent wave function would be φ−(r⃗, t). There
is no reason to assume that the spatial part should necessarily be the same in the two
cases (although it is quite often the case). The corresponding probability densities are:

ρ+(r⃗, t) = |φ+(r⃗, t)|2 , ρ−(r⃗, t) = |φ−(r⃗, t)|2 (202)

The total probability density to find the particle at time t at point r⃗ is

ρ(r⃗, t) = ρ+(r⃗, t) + ρ−(r⃗, t) (203)

and the equality ∫
ρ(r⃗, t) d3r = 1 (204)

must hold. To describe the whole wave function, we introduce the 2× 1 matrix

φ(r⃗, t) =

(
φ+(r⃗, t)
φ−(r⃗, t)

)
(205)

which is called spinor and it can also be expressed by

φ(r⃗, t) = χ̃+φ+(r⃗, t) + χ̃−φ−(r⃗, t) (206)

where χ̃± are column vectors (195). It can be easily verified that this matrix satisfies

φ†(r⃗, t)φ(r⃗, t) = ρ+ + ρ− = ρ (207)

By this paragraph, we have actually generalised or adapted the first postulate of QM
so that we can also describe a particle with spin 1/2.

26This was discussed in the 2nd postulate of QM, although not specifically in relation to spin.
27However, we can know in advance the probability of measuring a particular value; this is if we

know the wave function of the measured state.
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However, we will not deal with the description of spin using spinors further, be-
cause extending this formalism to the description of many-electron systems would be
impractical, at least for our purpose. Instead of spinors, we can use a wave function,
that will have a spin coordinate as an argument, which we will talk about in the next
sections.

8 Systems of Many Electrons

In this section we will consider mainly atoms and molecules with many electrons.
We have reviewed the postulates of QM in chapter 1. For simplicity and brevity, we
introduced them for one-particle systems. Therefore, it is now necessary to extend and
complete them so that we can use QM for systems with many electrons and correctly
take into account the spin of electrons.

8.1 Generalisation of the 1st Postulate: Many-Particle Wave Func-
tion28

Ψ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN ; t) (208)
is the wave function of the N -particle system.

|Ψ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN ; t)|2 d3r1d3r2 . . . d3rN (209)

is the probability that at time t, particle 1 is found around the point r⃗1 in the volume
element d3r1 and having the spin σ1 and simultaneously particle 2 is found around
the point r⃗2 in the volume element d3r2 and having the spin σ2 etc. The expression
|Ψ| (without the volume elements) is the corresponding probability density. It is found
practical to define the meaning of the many-particle wave-function as it stated above
even if we have a system of identical particles for which we do not really know which
of them is the 1st one, which is the 2nd etc.

Normalisation:∑
σ1=±1

∑
σ2=±1

· · ·
∑

σN=±1

∫
d3r1d3r2 . . . d3rN |Ψ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN ; t)|2 ≡

≡
∫

dx1dx2 . . . dxN |Ψ(x1, x2, . . . , xN)|2 = 1

(210)
28In English-written literature, the term many-body wave function is sometime being used.
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xi is a short notation for the spatial and spin coordinates together, i.e. (xi) ≡ (r⃗i, σi).
For even more brevity, we have introduced the formal integration sysmbol over xi. It
needs to be understood as including summation over the spin coordinte σi; it follows
directly from the introduced notation. The particles assumed in this section need not
necessarilly be electrons, neither have to be identical. But the formulae with the sum-
mations over spins assume spin 1/2. We will now introduce examples of particular
forms of the wave function.

8.1.1 One Particle (N = 1)

An elementary form of one-particle wave function dependent on both spatial and
spin coordinate can be expressed as a product of spatial and spin function:

Ψ(r⃗, σ) = φ(r⃗)χ(σ) (211)

where φ(r⃗) is some spatially dependent function and χ(σ) a spin-dependent one. If
this is really to be a quite simple form of wave function, then the spin-dependent part
should either represent spin up or spin down state, and not a linear combination of
spins. Therefore, the elementary (and most important) examples of the function χ(σ)
are the following particular functions:

χ+(σ) =

{
1, σ = +1

0, σ = −1
, χ−(σ) =

{
0, σ = +1

1, σ = −1
(212)

χ+(σ) is the eigenfunction of operator ŝz for the eigenvalue+h̄/2. Analogously, χ−(σ)
corresponds to the eigenvalue −h̄/2. Thus, χ+(σ) a χ−(σ) are one-particle spin wave
functions denoting states with spin up and down, respectively. We were using sim-
ilar symbols (χ̃+, χ̃−) in the matrix (spinor) formalism of section 7.3, but here we are
not using the formlism. To distinguish the notation, we use the letters χ without the
tildes here, although they physically represent the same as do expressions (195). Note
that the functions (212) involve both the spin coordinate (σ) and the spin index (+
or −), that is the spin quantum number. This is how it should be when expressing
spin-dependent eigenfunctions: 29 both the spin coordinate and spin quantum num-
ber should appear in their notation. However, if a spin-dependent function were not
an eigenfunction of the operator ŝz , then a particle in such a state would not have a
sharp (i.e., definite) value of its spin projection on the z-axis, and then the spin index
+ or − could not be ascribed to such a function.

29Eigenfunction of the operator ŝz , possible of some other.
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8.1.2 Two Particles (N = 2)

Now we are able to write elementary examples of two-particle wave functions as
follows:

Ψn1,ν1;n2,ν2(r⃗1, σ1, r⃗2, σ2) = φn1(r⃗1)χν1(σ1) φn2(r⃗2)χν2(σ2) (213)

where ν1, ν2 are the spin indices (quantum numbers) + or − . The indices n1, n2

are quantum numbers (or sets of quantum numbers) of the orbital, i.e. of the spatially
dependent functions φn1(r⃗1), φn2(r⃗2). Although the wave function just written can-
not yet represent a physical state of a pair of electrons, because it does not meet the
antisymmetry requirement, which we will learn later. However, by a linear combina-
tion of at least two wave functions of type (213), we will easily be able to construct an
antisymmetric wave function. However, the form (213) could represent e.g. the wave
function of the proton-electron system (if we consider the proton as a QM particle). 30

8.2 The 4th Postulate: Schrödinger Equation for the Many-Particle
Wave Function

ih̄∂Ψ
∂t

= ĤΨ (214)

Thus, this equation has the same form as it would have for one particle. Therefore, the
time-independent SchE will also the form as for a single particle.

8.3 System of Identical Particles

Quantum-mechanical particles of the same kind are indistinguishable.

This is also a postulate, consequencies of which are confirmed by experiments. We
will learn about the consequences of this postulate later and will work with it in this
subsection as well. You can see a more detailed discussion of indistinguishability, e.g.
in [2], beginning of chap. 15 or in [3], beginning of chap. XIV.

Consider a general many-body wave function [1]

Ψ(x1, x2, . . . , xN ; t) (215)

The particles even need not be electrons at this stage of our exposition. We only assume
them to be of the same kind, that is identical particles. As we have stated above, in

30We will approximate protons by classical particles in this course. Very often this is a completely
sufficient approximation.
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quantum physics we believe that they are indistinguishable. It means that if we make
an interchange of any two of the particles (in the mathematical formalism, this is ex-
pressed by interchange of the corresponding coordinates), nothing must change
physcially. Therefore, the wave function may at most change its phase upon such
interchange of the particles. We therefore demand the following:

Ψ(x1, . . . , xj, . . . , xi, . . . , xN ; t) = e iα Ψ(x1, . . . , xi, . . . , xj, . . . , xN ; t) (216)

where α is some real constant; we will soon see what specific values it can acquire.
It turns our convenient to introduce an operator for formal description of the in-

terchange of the particles i and j. We define ot by the equation

P̂ij F (xi, xj) = F (xj, xi) (217)

inwhichwe started to use themore concise notation expressing only the coordinates of
the electrons to be exchanges. F can be arbitrary function of the considered arguments
(possibly also of time); in this definition, it need not yet be the wave function Ψ. Even
a higher degree of brevity is achieved by denoting the arguments using numbers only,
i.e.

F (1, 2, . . . , N) (218)
and the action of the operator is

P̂ij F (i, j) = F (j, i) (219)

From the point of view of combinatorics, this operator make a permutation Using the
operator, we can now rewrite equation (216) as follows:

P̂ijΨ(i, j; t)︸ ︷︷ ︸
Ψ(j, i; t)

= e iα Ψ(i, j; t) (220)

We see that a physically correct (or realistic [2]) wave function of a system of identical
particles must be an eigenfunction of the particle interchange operator.

8.4 Eigenvalues and Eigenfunctions of the P̂ij operator

P̂ijf(i, j) = λf(i, j) (221)

Let us act by the operator P̂ij on this equation from the left. We will obtain two occur-
rencies of the operator on the LHS of the equation which will return the indices i and
j to their original order:

f(i, j) = λP̂ijf(i, j) = λ2f(i, j)
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Therefore
λ = ±1 (222)

Eigenfunctions for λ = +1 are those that obey the property f(j, i) = f(i, j). These
are called symmetric functions. Eigenfunctions for λ = −1 are those that obey the
property f(j, i) = −f(i, j). These are called antisymmetric functions.

The particle exchange operator is linear. It is also a hermitian one since it has real
eigenvalues. And, importantly, we are now already able to formulate the findings at
the end of the last section more specifically: A physically correct wave function of
a system of indentical particles has to be either symmetric or antisymmetric
upon exchange of the coordinates.

8.5 Commutation [Ĥ, P̂ij] = 0, Bosons, Fermions, Permutation
Symmetry of a Wave Function

The Hamilton operator corresponds to a physical quantity; therefore it will not
change upon interchange of two indetical particles:

P̂ijĤ = Ĥ (223)

This is a consequence of the postulated indistinguishability of the particles. The last
equation written represents the effect of the operator P̂ij on another operator (Ĥ).
Now act by the operator P̂ij on the function ĤF (i, j), where F (i, j) is any function
of multiple spatial and spin coordinates. Again, we write explicitly only those of them
that are interchanged by the given operator.

P̂ij{ĤF (i, j)} = Ĥ{P̂ijF (i, j)}

because the particle interchange operator will simply “cross” over the Hamiltonian and
will not do anything with it. For this holds for arbitrary function F , it implies that

[Ĥ, P̂ij] = 0 (224)

We have learnt in secion 3.1 what are consequences of commutation of two operat-
ors: a complete set of eigenfunctions for each of the operators can be constructed such
that all these functions are eigenfunctions of both the operators (Theorem 7). So by
meeting the requirement that the wave function be an eigenfunction of the particle inter-
change operator, we do not lose the ability to construct this function so that it is also an
eigenfunction of the Hamiltonian of the system.
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Now a question arises: is the many-particle wave function symmetric or antisym-
metric upon interchange of some of its two coordinates? Available data and analysis
show that [2, 3, 4]:

A system of identical bosons (particles of an integer spin) is always de-
scribed by a symmetric wave function. A system of identical fermions
(particles of a half-integer spin) is always described by an antisymmetric
wave function.

This statement must be considered to be an independent postulate in non-relativistic
QM (in addition to the postulates we have formulated in section 1). It applies also
for time-dependent function, not only for stationary ones. These properties of wave
functions can be proved theoretically in the quantum field theory. (I.e., they are just
some derived facts, not postulates, in the quantum field theory.) Using an explicit
formula, the antisymmetry is expressed by the relation The antisymmetry is

Ψ(j, i; t) = −Ψ(i, j; t) (225)

8.6 The Pauli Principle

Let us now write equation (221) for the eigensystem of the operator in more detail
and by writing the most general wave function possible, i.e. also time-dependent, to
see that the Pauli principle applies very generally, not only to stationary states.

P̂ijΨ(xi, xj; t) = λΨ(xi, xj; t) (226)

It means that in this section we consider a wave function either symmetric or antisym-
metric; only these two kinds can be eigenfunctions of P̂ij . See section 8.4. And it also
means (according to the postulate at the end of the previous section) that we consider
a wave function of a system of identical particles, either bosons or fermions. We now
expand the N -particle wave function Ψ(xi, xj; t) in some complete set of orthogonal
functions as follows (see Appendix A.2):31

Ψ(xi, xj; t) =
∑
ni

∑
nj

Cninj
(x̄; t)ϕni

(xi)ϕnj
(xj) (227)

where x̄ is the set of coordinates x1, . . . , xN excluding the coordinates xi, xj . ni, nj

are summations indices which also represent quantum numbers. Typically, they are
composite indices.

31It was explained in the lecture too: we first imagine the functionΨ(xi, xj ; t) as dependent on single
variable only, the other variables having some fixed values. Etc.
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For example, if we were going to express a state of electrons in an atom by the
wave function Ψ(xi, xj; t), the single-particle basis functions ϕni

(xi) would then be
eigenfunctions of the hydrogen atom or similar functions; thus, the simple symbol ni

would in fact mean
ni → (ni, li,mi, νi)

where ni ∈ N on the RHS is the principal quantum number, li ∈ {0, 1, . . . , ni − 1} is
the orbital quantum number,mi ∈ {−li,−li + 1, . . . , li} je magnetické kvantové číslo
and νi is the spin quantum number (by convention, its values can be±1/2 or±1, or it
is only denoted by the symbols +, −). We have discussed the spin quantum numbers
in sections 8.1.1 and 8.1.2.

We can interpret expression (227) as follows: assuming that the particles with the
exception of the ith and jth one are at positions denoted by the multi-coordinate x̄,
Cninj

(x̄; t) is the probability amplitude32 to find the particle i in the state ϕni
and at

the same time to find the particle j in the state ϕnj
. A more detailed and elementary

explanation of the meaning of expansion (227) is explained in Appendix A.2. Now,
substitute expansion (227) into(226); we can omit the arguments in the coefficients
Cninj

(x̄; t) for the sake of brevity.

P̂ij

∑
ni

∑
nj

Cninj
ϕni

(xi)ϕnj
(xj) = λ

∑
ni

∑
nj

Cninj
ϕni

(xi)ϕnj
(xj)

We apply the permutation operator in the LHS.

LHS =
∑
ni

∑
nj

Cninj
ϕni

(xj)ϕnj
(xi)

In next step, we rename the summation indices: ni ↔ nj (which is a trivial operation
for the symbol used as a summation index can be arbitrary).

LHS =
∑
nj

∑
ni

Cnj ni
ϕnj

(xj)ϕni
(xi)

Let us now equate the LHSwith the RHS. In doing so, we write the summation symbols∑
in the same order as they are on the RHS; the result does not depend on the order.∑

ni

∑
nj

Cnj ni
ϕnj

(xj)ϕni
(xi) = λ

∑
ni

∑
nj

Cninj
ϕni

(xi)ϕnj
(xj)

32If we had two particles only in the system, then Cn1 n2
(x̄; t) would be a true probability amplitude

(amplitude of probability). But since we aim to consider an N -particle system, we introduced a little of
technical and interpretive complication to our proof of the Pauli principle, in particular, we had to say
“assuming that the particles with the exception of …”.
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From this, we obtain the equation∑
ni

∑
nj

(
Cnj ni

− λCninj

)
ϕni

(xi)ϕnj
(xj) = 0 , ∀xi, xj

We multiple this equation by functions ϕ∗
mi
(xi) a ϕ∗

mj
(xj) from the left side and sub-

sequently we do integration over the spatial coordinates and summation over the spin
coordinates. Employing the orthogonality∫

ϕ∗
m(x)ϕn(x) dx ∝ δm,n (228)

(in fact, there is the summation over the spin coordinate but we denote it all using just
the integration symbol for brevity) we obtain the set of algebraic equations33

Cnj ni
= λCninj

(230)

It means that the expansion coefficients Cninj
are either symmetric or antisymmetric

with respect to the exchange od their indices. This could already be deduced directly
from expansion (227).

What is the probability that at time t both particle i and particle j will be in the
same state ϕn ? To explore it, let us look at the coefficients with the same indices in
expansion (227), that is ni = nj . According to (230), the case of ni = nj = n implies

Cnn = λCnn (231)

For λ = 1 (bosons), it is an identity. For λ = −1 (fermions) we obtain Cnn = 0. It
means that

probability to find two fermions to occupy the same single-particle state
ϕn(x) is vanishing, which is the statement of the Pauli exclusion principle.

In other words, two fermions cannot occupy the same individual quantum state [3]. For
example, if an electron in an orbital around an atomic nucleus is characterised by the

33From the mentioned orthogonality of the one-particle functions, the orthogonality for the two-
particle functions also follows:∫

ψ∗
M (xi, xj)ψN (xi, xj) dxi dxj ∝ δMN (229)

with ψM (xi, xj) = ϕmi
(xi)ϕmj

(xj), and analogously ψN (xi, xj). M = (mi mj), N = (ni nj) are
composite (double)indices. Ordering of their components is unimportant.
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quantum numbers n, l, m and, in addition, by the projection of its spin on the z axis
(which can be understood as a spin quantum number and denoted as ms or ν), then
any state of any other electron (in the same atom) must differ in at least one of the four
quantum numbers. (The spin quantum numbers have been explained in sections 8.1.1
and 8.1.2.)

In what follows, wewill mostly discuss not a general wave function (which can also
be time-dependent) but stationary states only, i.e. eigenfunctions of the Hamiltonian.34

8.7 Wave Function of a Two Electron System

The best known and most frequently met representants of two-electron systems
are the helium atom and the hydrogen molecule H2 [8]. We will work out the helium
atom in an exercise and will calculate its ground-state energy using a simple version
of the variational method with one parameter (see Appendix D). We obtained or will
obtain the result – especially the energy of its ground state – which has a remarkable
quantitative accuracy given the simple analytically manageable method we use for it.
In this section, we will focus on better understanding thewave function of two-electron
systems, and not only the wave function of the ground state, but also the excited states.

It is worth saying in advance that the exact eigenfunctions of any two- and many-
electron interacting system cannot be expressed analytically. The obstacle is caused
by the Coulomb interaction of electrons with each other, which is a difficult problem
when examining the electronic structure. In other words, we cannot solve the cor-
responding Schrödinger equation (neither stationary nor time-dependent) exactly for
such a system. Numerically, however, at least the ground state of the two-electron
system could be found with virtually any accuracy.

To understand the electronic structure, it is necessary to know at least qualitat-
ively a correct analytical form of the wave function. We propose the wave function of
helium (also of a similar ion, but briefly speaking only helium) expressed in the form
of the product ψ(r⃗1, r⃗2) = φ(r⃗1)φ(r⃗2) of the hydrogen orbitals. We have done it so
in the exercise; see (D.4). Let us now examine particular forms of two-electron wave
functions in the context of the general requirements that a correct wave function has
to meet.

34Determination of eigenenergies of a Hamiltonian is the principal task in the electronic structure
theory and also in this course.
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8.7.1 Independent Electrons

At first, we have to realise that the factorised form φ(r⃗1)φ(r⃗2) [eq. (D.4)] cannot be
an exact eigenfunction of the helium Hamiltonian (D.1). To make sure of this, consider
a two-electron Hamiltonian that can be written as a sum of commuting single-particle
operators as follows:

Ĥ ind = ĥ1(r⃗1) + ĥ2(r⃗2) (232)
It is therefore the sum of mutually independent operators, because the individual vari-
ables (coordinates) are separated. Assume we know the exact eigenfunctions of these
one-particle Hamiltonians:

ĥ1(r⃗)φ1(r⃗) = E1φ1(r⃗) , ĥ2(r⃗)φ2(r⃗) = E2φ2(r⃗) (233)

Let us now construct the factorised function

ψ(r⃗1, r⃗2) = φ1(r⃗1)φ2(r⃗2) (234)

and calculate what the Hamiltonian Ĥ ind will do with it:

Ĥ indψ(r⃗1, r⃗2) =
[
ĥ1(r⃗1) + ĥ2(r⃗2)

]
φ1(r⃗1)φ2(r⃗2) = E1φ1(r⃗1)φ2(r⃗2) + E2φ1(r⃗1)φ2(r⃗2)

thus
Ĥ indψ(r⃗1, r⃗2) = (E1 + E2)ψ(r⃗1, r⃗2) (235)

The above procedure can be reversed in its sequence (albeit in a little more complicated
way) and thus it can be shown that if some product function φ1(r⃗1)φ2(r⃗2) is an (exact)
eigenfunction of some Hamiltonian dependent on the variables r⃗1 and r⃗2, then the
Hamiltonian can be expressed as the sum of type ĥ1(r⃗1) + ĥ2(r⃗2). So we state:

The product (factorised) wave function (234) is the (exact) eigenfunction of Hamiltonian
(232) having separated variables. The energy of such a two-particle system is the sum of
the energies of the individual particles (here electrons).

Two electrons described by the Hamiltonian of the type ĥ1(r⃗1) + ĥ2(r⃗2) are mutually
independent, they do not affect one another in any way. However, the product wave
function cannot be an exact eigenfunction of the helium Hamiltonian, because this
cannot be written as a sum of the type ĥ1(r⃗1) + ĥ2(r⃗2). The interaction term Ŵ =
1/|r⃗1 − r⃗2|, which cannot be decomposed into a separated form, prevents this. Thus,
in our exercise, we actually found (or will only find) an exact ground state of some
effective Hamiltonian of the form

Heff = −1

2
∇2

1 −
1

2
∇2

2 −
Zeff

r1
− Zeff

r2
(236)
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only (expressed in the atomic units), where Zeff expressed by (D.44) is the effective
nuclear charge calculated by the optimisation. As we can see, Heff, is just a particular
example of the separated form Ĥ ind. Thanks to especially the mentioned optimisation,
we were able to consider the factorised wave function of type φ1(r⃗1)φ2(r⃗2) as at least
approximately a good eigenfunction of the helium Hamiltonian. If we did not optimise
anything, then the electron shell of such a helium would only be an addition of two
electron shells of the helium cations on each other, without any manifestation of the
electron interaction. Since we have done the optimisation, the electrons in such a
helium model are not considered to be completely independent of each other from a
physical point of view. Their interaction is included in such a way that the charge of
the nucleus in such a model is (effectively) smaller than the actual charge of the helium
nucleus. It is an effect of the partial screening of the nucleus field by the other electron.
Mathematically, however, the form of the wave function remains at a simple level of
independent electrons, which is of course very practical. This is used in mean-field
methods, where an electron moves as if without interacting with the other electrons
in an average field generated by the nuclei and the other electrons. In the context of
electronic structure, these are the Hartree method and also the Hartree-Fock method,
which we will talk about later.

8.7.2 Antisymmetry of Wave Function

We have learnt in section (8.5) that a wave function for a system of identical fer-
mions must be antisymetric upon interchange of the coordinates of any two fermions,
i.e. it has to switch its sign. The product wave function we used for the helium atom
is obviously not of this kind. We used φ1 = φ2 = φ for the ground state of helium
(thus both electrons occupying the same atomic orbital). Such a function is symmetric;
therefore we now denote it as ψS(r⃗1, r⃗2):

ψS(r⃗1, r⃗2) = φ(r⃗1)φ(r⃗2) (237)

How dowe deal with the problem that it is not antisymmetric? We realise that we have
not considered any spin in whis wave function. A complete form of a wave function
has to include spin too; we use the spin coordinates for this. Only such a complete
(total) wave function must be antisymmetric. In addition to this property, we want it
to express that two electrons (e.g., in a helium atom or in an H2 molecule) occupy the
same spatial orbitals, but differ in their spins.

If we express the total wave function in the form

Ψ(r⃗1, σ1, r⃗2, σ2) = ψS(r⃗1, r⃗2)χA(σ1, σ2) (238)
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where χA(σ1, σ2) is some antisymmetric function of the spin coordinates, then also the
product (238) will be an antisymmetric function. Even without a deeper reasoning (we
will do it later), it is so far acceptable that the antisymmetric spin wave function can
be expressed as follows:

χA(σ1, σ2) =
1√
2
[χ+(σ1)χ−(σ2)− χ−(σ1)χ+(σ2)] (239)

where χ+(σ) a χ−(σ) are one-particle spin wave functions denoting states with spin
“up” and “down” [see (212)]:

χ+(σ) =

{
1, σ = +1

0, σ = −1
χ−(σ) =

{
0, σ = +1

1, σ = −1
(240)

The multiplication constant 1/
√
2 in the wave function is to ensure the proper norm-

alisation:
⟨χA|χA⟩ =

∑
σ1=±1

∑
σ2=±1

χ∗
A(σ1, σ2)χA(σ1, σ2) = 1

In this way we have solved the problem that the purely spatial (i.e. orbital) wave func-
tion of helium, as we had proposed it by formula (237), did not obey the anisymmetry
requirement. The total wave function (238) cannot be expressed as a product of two
functions, one of which would depend on the coordinates of the first electron only, the
other on the coordinates of the second. Thanks to the form (237) we can say that in
state (238), both electrons occupy identical spatial orbital, but differ in the projections
of their spins on the z axis. Consequently, the Pauli principle, which says that two
electrons cannot occupy the same one-particle state, is satisfied as well. Ours differ in
their spins which suffices to satisfy the Pauli principle.

It is necessary to realise that functions not obeying the antisymmetry principle can
also be eigenfunctions of Hamiltonian Ĥ ind [eq. (232)] (and also of other Hamiltonian,
see below). For instance, a mathematically correct eigenfunction is also the (purely
spatial-dependent) function (234), which is neither symmetric nor antisymmetric. If
we multiplied it by any spin-dependent function, such total wave function would still
be a mathematically correct eigenfunction of Hamiltonian (232). However, we have
learnt in section 8.5 that a correct total (both spatial and spin-dependent) wave func-
tion for a system of electrons must be antisymmetric. Of the many mathematically
correct eigenfunctions of the Hamiltonian, only those that satisfy the antisymmetry
requirementm, are physically significant (correct).
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8.7.3 Clasification of States in the Helium Atom

At the the end of the last section, wemade the statement in the sense that whatever
is the spin part of the total wave function, this wave function will still be a mathem-
atically correct eigenfunction of the Hamiltonian Ĥ ind [eq. (232)], assuming of course
that the spatial part ψ(r⃗1, r⃗2) is mathematically correct. This holds not only for Ĥ ind;
consider the exact non-relativistic Hamiltonian of the helium atom or like ion (shortly
just helium):

Ĥ = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
1

4πε0

Ze2

r1
− 1

4πε0

Ze2

r2
+

1

4πε0

e2

|r⃗1 − r⃗2|
(241)

Let ψ(r⃗1, r⃗2) be one of its purely spatial eigenfunctions:

Ĥψ(r⃗1, r⃗2) = Eψ(r⃗1, r⃗2)

(Of course, this is not a factorised function.) Write the total wave function as follows:

Ψ(r⃗1, σ1, r⃗2, σ2) = ψ(r⃗1, r⃗2)χ(σ1, σ2) (242)

Ψ is an eigenfunction of Ĥ with arbitrary χ(σ1, σ2), for the non-relativistic helium
Hamiltonian [eq. (241)] does not dependent on spin variables. Such a Hamiltonián
(and also any other that is independent of spin variables) in no way effects on the
purely spin function χ. To be convinced explicitely about it, calculate as follows:

ĤΨ(r⃗1, σ1, r⃗2, σ2) = Ĥ[ψ(r⃗1, r⃗2)χ(σ1, σ2)] = χ(σ1, σ2)Ĥψ(r⃗1, r⃗2) =

= EΨ(r⃗1, σ1, r⃗2, σ2)

that is, Ψ(r⃗1, σ1, r⃗2, σ2) is really the eigenfunction.
And if ψ(r⃗1, r⃗2) were an only approximate purely spatial eigenfunction of Ĥ , then

Ψ(r⃗1, σ1, r⃗2, σ2) would be an approximate total eigenfunction.
However, the independence of a Hamiltonian of spin coordinates also means that such

a Hamiltonian commutes with any spin operator. Realise that this holds not only for
the simplified Hamiltonian Ĥ ind [eq. (232)], but also, for example, for the exact non-
relativistic helium Hamiltonian Ĥ [eq. (241)] containing the electron-electron interac-
tion contribution. For example, the identities

[Ĥ, Ŝz] = [Ĥ, Ŝ2] = 0 (243)

hold, in which
ˆ⃗
S = ˆ⃗s1 + ˆ⃗s2 (244)
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is the total spin angular momentum (AM) operator of a two-electron system and

Ŝ2 = (Ŝx)
2 + (Ŝy)

2 + (Ŝz)
2 (245)

is the definition of the operator of the square of the total spin AM of the system. By a
simple explicit calculation, it can be convinced that this operator has also the from

Ŝ2 = (ŝ1 + ŝ2)
2 (246)

which we intuitively expect too. As we have seen in previous lectures, the pair of AM
operators describing the projection on the z-axis and the square of AM magnitude are
especially important. Therefore, in accordancewith (243), it is convenient and practical
to construct the eigenfunctions of the spin-independent Hamiltonian so that they are
also eigenfunctions of the operators Ŝz and Ŝ2. 35

Let us, therefore, verify whether the wave function Ψ = ψSχA [eq. (238)] includ-
ing the anisymmetric spin function (239) is an eigenfunction of the operators Ŝz and
Ŝ2. (Now begins the “deeper reasoning” that we have mentioned in sec. 8.7.2, but we
skipped it.) The orbital part of the wave function will not do anything wrong in this
verification, because it does not contain spin degrees of freedom (spin coordinates) and
we simply “swap” the spin operator over it, as we will see below. First, calculate

ŜzΨ(r⃗1, σ1, r⃗2, σ2) ≡ ŜzΨ(1, 2) = Ŝz [ψS(1, 2)χA(1, 2)] = [swap] =
= ψS(1, 2)ŜzχA(1, 2)

35And this is not all, because proper eigenfunctions must also be eigenfunctions of the particle ex-
change operator, see (217) and the end of the relevant paragraph. In addition, the spin-independent
Hamiltonian of the atom also commutes with the operators of the total orbital angular momentum,
which for helium are the Cartesian components of the operator

ˆ⃗
L =

ˆ⃗
ℓ1 +

ˆ⃗
ℓ2

and also the important operator L̂2. Therefore, the correct and practically expressed eigenfunction of the
spin-independent Hamiltonian should also be an eigenfunction of the operators L̂z and L̂2. Fortunately,
we are already familiar with this, at least in the case of the hydrogen atom, but we see that things get
complicated. We would have an even more complex task if we included the spin-orbital interaction in
the Hamiltonian, i.e. that the Hamiltonian would also depend on the spin coordinates. There, in general,
the Hamiltonian of an atom would commute with the total angular momentum Ĵ = L̂ + Ŝ and with
its square Ĵ2, but not with the orbital or spin moment separately. We return to the commutation with
Ĵz and Ĵ2 because this applies to an atom in general. These problems are easier to study by examining
the invariance of the Hamiltonian under different rotations in orbital and spin space [2]. The angular
momentum operators are also operators expressing rotations in orbital or spin space. However, we do
not have time to deal with this.
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If the equality (not verified yet) ŜzχA(1, 2) = λχA(1, 2), would be true, then we would
get ŜzΨ(1, 2) = λΨ(1, 2), that is the function Ψ would be an eigenfunction of the
operator Ŝz regardless of the form of the purely orbital function ψS. Hence, it is sufficient
to check whether the spin function χA(1, 2) is an eigenfunction of the operator Ŝz . If
this is so, then the total wave function Ψ(1, 2) is an eigenfunction too. So, do the
verification:

ŜzχA(1, 2) =
1√
2
(ŝ1z + ŝ2z) [χ+(1)χ−(2)− χ−(1)χ+(2)] =

1√
2

{[
h̄

2
χ+(1)χ−(2)−

h̄

2
χ+(1)χ−(2)

]
−
[
−h̄
2
χ−(1)χ+(2) +

h̄

2
χ−(1)χ+(2)

]}
= 0

(247)

Thus, the two-electron spin functionχA(1, 2) is really an eigenfunction of the spin-sum
operator and the corresponding eigenvalue is 0, i.e. the corresponding two-particle
state demonstrates zero projection of the total spin on the z axis. However, it is neces-
sary to verify, whether this spin function is also an eigenfunction of the operator Ŝ2.
To do this, we express the operator in the form

Ŝ2 = Ŝ+Ŝ− + (Ŝz)
2 − h̄Ŝz (248)

which we have derived for the general angular momentum in the exercise; see for-
mula (57a). We will employ also one of the equalities (69) expressing the effect of
the raising and lowering operators on the angular momentum eigenstates. So, we can
calculate:

Ŝ2χA(1, 2) = Ŝ+Ŝ−χA + Ŝz ŜzχA︸ ︷︷ ︸
0

−h̄ ŜzχA︸ ︷︷ ︸
0

Thus, we need to evaluate

Ŝ−χA = (ŝ1− + ŝ2−)
1√
2
[χ+(1)χ−(2)− χ−(1)χ+(2)]

Realise that ŝ1− acts on functions with the spin coodinate of the electron 1 [i.e. on
χ+(1), χ−(1)] and analogously, ŝ2− on the electron 2. We do the multiplication of the
expressions in the parentheses, use the mentioned formula (69b) for j = 1/2 and m
either +1/2 or −1/2. After a few lines we get

Ŝ−χA = 0

Therefore, the equality
Ŝ2χA(1, 2) = 0 (249)
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holds. It means that the spin wave function χA(1, 2) [and consequently also the total
wave functionΨ(1, 2)] is also an eigenfunction of the operator Ŝ2 and the correspond-
ing eigenvalues is zero again.

Thus, the antisymmetric two-electron spin wave function [eq. (239)] represents a pair
of electrons with zero projection of the sum of their spins on the z axis (and also on other
arbitrary axis) and also with zero total spin (i.e. with zero eigenvalue of the operator Ŝ2).

Štandardne sa pre spinové vlnové funkcie používa značenie

χS
Sz

(250)

is being used for the spin wave functions. The upper index marks the value of S in the
equation

Ŝ2χS
Sz

= h̄2S(S + 1)χS
Sz

(251)
and the lower index the value of Sz in the equation

Ŝzχ
S
Sz

= h̄Szχ
S
Sz

(252)

[See, for instance, equations (68), in which we were omitting h̄ for the sake of brevity.]
From the indices S and Sz we know what eigenvalues of the operators Ŝ2 and Ŝz their
common eigenfunction corresponds to, so we know everything about the total spin of
the system.

Singlet: S = 0, Sz = 0. Thus, we write the spin function (239) as follows:

χA(σ1, σ2) = χ0
0 =

1√
2
[χ+(σ1)χ−(σ2)− χ−(σ1)χ+(σ2)] (253)

It is called singlet. A system in the singlet state (the He atom, for instance) has anti-
parallel spins of its electrons and the total spin 0.

Triplet: S = 1, Sz ∈ {−1,0,+1}. From the theory in section 4.5 we know, that
spin functions with non-zero spin should obviosly to exist. (We still consider a two-
electron system.) These are the functions [2, 3]

χ1
1 = χ+(σ1)χ+(σ2)

χ1
0 =

1√
2
[χ+(σ1)χ−(σ2) + χ−(σ1)χ+(σ2)]

χ1
−1 = χ−(σ1)χ−(σ2)

(254a)

(254b)

(254c)
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and together they are called a triplet. This name originates from the property that if
an atom is inserted in an external magnetic field, then the corresponding energy level
(which would otherwise be degenerate if we neglect other, very weak effects) splits
into three sublevels. If the atom in in the singlet state, then there is no such splitting.
In this document, we do not present calculations verifying that (254) are really the
eigenfuntions of the operators Ŝz and Ŝ2, but we have written the hints in this course
and we have been doing calculations of this kind couple of times and you ought to be
able to accomplish them. The procedure for χ1

1 is straightforward and similar to that
above for χ0

0 = χA and also shorter. We can then calculate the vectros χ1
0 a χ1

−1 using
the lowering operator Ŝ−, i.e. with the aid of formula (69b). Or, we can directly verify
them as we did with χA. Recall that in the Dirac ket-vectors notation, the components
of the triplet are written

|1, 1⟩, |1, 0⟩, |1,−1⟩ (255)

Note the the three functions of the triplet are symmetric. Consequently, if we aim to
form a total wave function out of them, its orbital part must be antisymmetric.

A system in any triplet state has the magnitude of the total spin described by the
quantum number S = 1. If the state is χ1

1, then also Sz = 1, which means that both
electrons have their spin projections on the z axis equal to +1/2. We say that the
spins are parallel and equally oriented (i.e. they point to the same direction), which is
an inaccurate informal wording. The spins are of this character also in the state χ1

−1,
but then sz = −1/2. (Lower-case letters are used for symbols related to one particle,
upper-case for the whole system.) The spin projections in the state χ1

0 are mutually
opposite but the total spin magnitude is still determined by the value S = 1; hence the
square if the total spin magnitude is h̄2S(S + 1) = 2h̄2.

An illustrative picture is that the arrow of the spin AM has equal length for each
state of the triplet χ1

Sz
[its square is 1(1 + 1)h̄2 = 2h̄2] given by the number S = 1. In

the case of Sz = 1, this vector is oriented along the positive z-axis direction. In the
case of Sz = −1, it is oriented to the negative direction, and in the case of Sz = 0, it is
perpendicular to the z axis. If we, for example, looked at the state χ1

1 from a viewpoint
of a differently oriented coordinate system, we would have to write it as, e.g. χ ′1

−1

(this would only be in the case if the new z axis was oriented exactly oppositely),
but in general, we would have to express it as a linear combination of all the three
components, i.e. χ ′1 =

∑1
Sz=−1 χ

1
Sz
. Of course, it would be a triplet state also in this

other coordinate system, but in general, if viewed from the different point of view, it
would not have a sharp (definite) value of Sz We also see the the three vectors of a
triplet are mutually of the same importance; we also say that they transform among
themselves upon rotations of the coordinate system.

And why the “arrow length” of the spin AM in a triplet state in not equal to the
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value of 1/2 + 1/2 = 1 (in h̄ = 1 units)? After all, it is about two electrons and if
they point their spin AM to the same directions, we should obtain 1/2 + 1/2 = 1. It
is because of the quantum-mechanical uncertainty. It is true that the “arrow length”,
more practically its square, is determined by the operator Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . It is the
QM expectation value of this operator in the given state; shortly ⟨Ŝ2⟩. But because the
cartesian components Ŝx, Ŝy, Ŝz do not commute among themselves, it is impossible
to determine sharp (definite) values Sx, Sy, Sz . Consequently, it is not possible to
determine the square of the “arrow length” in the classical way as S2

x + S2
y + S2

z . We
have Sz = 1 for the state χ1

1 and we might think that we just need to take Sx = Sy = 0
and in this way determine the square of the arrow length; we would get 1 which is a
wrong value because the correct one for the triplet state is S(S+1) = 2. The value of 2
is also the QM expectation value of this operator in any triplet state: ⟨χ1

Sz
|Ŝ2|χ1

Sz
⟩ = 2

(in the units of h̄2).
There are no higher multiplets for the helium atom because two electrons cannot

yield a total spin greater than 1. For this, we would need a system of more electrons,
e.g. the lithium atom at least.

Any function of a triplet is orthogonal to the singlet function:

⟨χ1
Sz
|χ0

0⟩ =
∑

σ1=±1

∑
σ2=±1

χ1 ∗
Sz
(σ1, σ2)χ

0
0(σ1, σ2) = 0 (256)

It can easily be verified and it generally follows from the fact that they are eigenfunc-
tions corresponding to different eigenvalues of a hermitian operator, specifically of Ŝ2.
The individual components of the triplet are mutually orthogonal too:

⟨χ1
Sz
|χ1

S′
z
⟩ = δSz ,S′

z
(257)

Other multiplets. Hélium aj iné dvojelektrónové sústavy teda umožňujú len exist-
enciu singletných a tripletných spinových stavov elektrónového obalu, teda stavov
s celkovými elektrónovými spinmi S buď 0 alebo 1. Jednoelektrónová sústava, ako
napr. atóm vodíka, má zasa celkový elektrónový spin S rovný vždy 1/2, čo umožňuje
dva rôzne priemety spinu na os z (dve rôzne hodnoty Sz), a túto dvojicu spinových
stavov nazývame v angličtine aj v iných jazykoch doublet (čítaj dablet). Pre lítium
(N = 3) by sme mali aj stavy s S = 3/2, čo dáva počet rôznych priemetov na os z
2S + 1 = 4, a takáto štvorica spinových stavov sa v odbornej literatúre nazýva quar-
tet. Pre vyššie multiplety sa pri štúdiu elektrónovej štruktúry (ale aj u NMR) často
stretávame aj s názvami quintet a sextet, popr. aj ďalšími.
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9 The Hartree-Fock Approximation

For an N -electron system, the complete non-relativistic Hamiltonian with added
spin contributions takes the form36

Ĥ =
N∑
i=1

[
− h̄2

2m
∇2

i + v̂ext(r⃗i)

]
+

1

2

N∑
i,j=1

′ e
2

4πε0

1

|r⃗i − r⃗j|
+ Ĥspin (258)

where the prime (the comma) at the summation over i, j indicates that cases with i = j
are not accounted for. The term with the operators v̂ext(r⃗i) represents the electrostatic
interaction of the i-th electron with the given (external) potential, which itself is a sum
of the Coulomb potentials due to the nuclei and, in addition, it may include contribu-
tions from possible other sources (e.g. a capacitor field, into which the molecule may
be inserted:37

v̂ext(r⃗) = −
∑
I

1

4πε0

ZIe
2

|r⃗ − R⃗I |
+ v̂other(r⃗) (259)

where I labels the individual nuclei of the molecule or a crystal, which we assume
to be fixed, i.e. motionless (which often is a good approximation) and are positioned
at the points R⃗I . The charges of the nuclei are ZIe. Even if the nuclei were mov-
ing slowly, our description using the stationary SchE would usually be satisfactory,
because with slow motion, the electronic structure manages to adapt to the instant-
aneous positions of the nuclei. Neglect of the kinetic energy of the nuclei is called
the Born-Oppenheimer approximation. We did not include the Coulomb energy of the
nuclei into the Hamiltonian (258), i.e. the term

1

2

∑
I,J
I ̸=J

1

4πε0

ZIZJ e
2

|R⃗I − R⃗J |
(260)

With constant positions of the nuclei, this term represents only a constant shift in
the total energy of the system and its inclusion would therefore be trivial. Hence, we
will omit it. However, it would be necessary to include it at least in cases where we
would study e.g. dependence of the energy of the ground state of the molecule on the
positions of the nuclei, vibrational frequencies, etc. An external magnetic field is not
included in Hamiltonian (258).

36The existence of spin follows from the relativistic theory. We do not study a relativistic theory, but
since we need to include spin into the description, we added it into the theory ”by hand” (we postulated
it in Chapter 7 based on known experimental facts and also on what we have learnt about the angular
momentum earlier in section 4.5).

37The external field in which an electron is located is therefore, in this context, understood to be the
electrostatic field generated by the nuclei and by any other external sources.
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Our task is to find the solution of the problem

ĤΨ = EΨ (261)

at least for the ground state. For Hamiltonian (258), we cannot find an exact solution
of this equation mainly due to the term with electron-electron repulsion. The Hartree
method and especially the Hartree-Fock one makes it possible to find at least an ap-
proximate solution.

9.1 Motivation for Further Steps

The task to finding the eigenstates of Hamiltonian (258) would be greatly simplified
if we could replace this Hamiltonian with an effective Hamiltonian of the form that is
a sum of one-particle terms:

Ĥeff =
N∑
i=1

ĥeff
i (r⃗i, σi) (262)

This form implies as if the individual electrons were not interacting with each other,
and therefore we often briefly call such a Hamiltonian a ”non-interacting Hamilto-
nian.” In fact, such or a formally similar Hamiltonian may involve at least an indirect
interaction between electrons, as we will see later. For the sake of generality, we now
consider possible dependence of the Hamiltonian on spin, although we will abandon
it later; in traditional expositions of the Hartree method (HM) and the Hartree-Fock
method (HFM), spin usually does not enter the Hamiltonian. However, its inclusion
would not present a difficulty. Wewill label the spatial and spin coordinates in different
ways, depending on what is convenient for particular purpose: (r⃗i, σi) ≡ (xi) ≡ (i).

Assume that we know the solutions of each of the effective one-particle Hamilto-
nians:

ĥeff
i ϕi(i) = Eiϕi(i) (263)

(For this is a one-particle problem, solutions to it would not be, hopefully, difficult to
determine at least numerically.) It can then be easily shown that the solution for the
total Hamiltonian (262) is the product function

ΨHP(1, 2, . . . , N) = ϕ1(1)ϕ2(2) . . . ϕN(N) (264)

that is
Heff ΨHP = EΨHP (265)
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with the eigenenergy being the sum of the energies of the individual electrons:38

E =
N∑
i=1

Ei (266)

A wave function of the form (264) is called Hartree product.

9.2 Antisymmetrisation of the Wave Function

Although the wave function of the form (264) may also be an exact solution for
the effective Hamiltonian (262), it is not physically satisfactory because it is not anti-
symmetric. It is not even symmetric, so it does not respect the indistinguishability of
electrons at all. (However, it would be symmetric at least if we chose functions of the
same form for ϕ1, …, ϕN .) We will show how to make an antisymmetric function from
it.

N = 2 .

ϕ1(1)ϕ2(2) −→ 1√
2
[ϕ1(1)ϕ2(2)− ϕ1(2)ϕ2(1)] =

1√
2

∣∣∣∣∣ ϕ1(1) ϕ2(1)

ϕ1(2) ϕ2(2)

∣∣∣∣∣ = Ψ(1, 2)

(267)

N = 3 . This is more complicated here, so we will first show how to make a sym-
metric function from the Hartree product and then an antisymmetric one. From the
trio 1, 2, 3 representing the coordinate of electrons, we create all possible permutations
(physically representing mutual exchanges of electrons):

123 132 231 213 312 321 (268)

We write down the symmetrised function as follows:

Ψsym = N
[
ϕ1(1)ϕ2(2)ϕ3(3) + ϕ1(1)ϕ2(3)ϕ3(2)+

+ϕ1(2)ϕ2(3)ϕ3(1) + ϕ1(2)ϕ2(1)ϕ3(3)+ (269)

+ϕ1(3)ϕ2(1)ϕ3(2) + ϕ1(3)ϕ2(2)ϕ3(1)
]

38It will be somehow more difficult in the HF method.
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where N is a normalisation constant such that ⟨Ψ|Ψ⟩ = 1. It is easy to convince that
the antisymmetric function will be similar to the last one, but in such a way that at
each odd permutation the sign of the respective term will be changed: 39

Ψ(1, 2, 3) =
1√
6

[
ϕ1(1)ϕ2(2)ϕ3(3)− ϕ1(1)ϕ2(3)ϕ3(2)+

+ϕ1(2)ϕ2(3)ϕ3(1)− ϕ1(2)ϕ2(1)ϕ3(3)+ (270)

+ϕ1(3)ϕ2(1)ϕ3(2)− ϕ1(3)ϕ2(2)ϕ3(1)
]

For instance, the 123 permutation is 0th, that is even. The 321 permutation is formed by
one interchange of the order of the electrons 1 and 3 compared to the originally defined
order (123), so it is odd. We get the 312 permutation from the original order by two
consecutive elementary swaps, so it is an even permutation. Possibly by four swaps,
but it’s also an even number. Again, it is easy, albeit a little longer, to be convinced
that we can also write antisymmetric three-electron function (270) as a determinant:

Ψ(1, 2, 3) =
1√
6

∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) ϕ3(1)

ϕ1(2) ϕ2(2) ϕ3(2)

ϕ1(3) ϕ2(3) ϕ3(3)

∣∣∣∣∣∣∣ (271)

A General N . There is N ! permutations of N numbers. We produce the antisym-
metric function from the Hartree product (264) as a linear combination of N ! terms,
which we write as follows:

Ψ(1, 2, . . . , N) =
1√
N !

N !− 1∑
p=0

(−1)p ϕ1(1p) ϕ2(2p) . . . ϕN(Np) (272)

The symbols 1p, …, Np are numbers obtained by pth permutation of the original order
1, …,N . The zeroth permutations represents the original order. It does not matter what
the order of the other permutations is. Only the parity of a permutation is important
(whether it is even or odd), and the parity does not depend on the chosen order. For
illustration, e.g. for N = 4 in brief symbolic notation,

Ψ(1, 2, 3, 4) =
1√
4!

(
1234− 1243 + 1342− 1324 + 1423− 1432+

+2143− 2134 + 2314− 2341 + 2431− 2413+

+3124− 3142 + 3241− 3214 + 3412− 3421+

+4132− 4123 + 4213− 4231 + 4321− 4312
)

39An equivalent alternative would be to change the sign at each even permutation.
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By permutation in these notes wemean either the whole orderedN -tuple of numbers,
or just an elementary swapping of a pair of numbers to get a givenN -tuple; the specific
meaning needs to be understood from the context. However, we will get the same
resulting antisymmetric wave function as (272) also in the case if we interchange just
the indices of the wave functions and will keep the order of the coordinates untouched
(original):

Ψ(1, 2, . . . , N) =
1√
N !

N !− 1∑
p=0

(−1)p ϕ1p(1) ϕ2p(2) . . . ϕNp(N) (273)

The wave function (273) can again be written as a determinants, as it is taught in al-
gebra:

Ψ(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) . . . ϕN(1)

ϕ1(2) ϕ2(2) . . . ϕN(2)

. . . . . . . . . . . .

ϕ1(N) ϕ2(N) . . . ϕN(N)

∣∣∣∣∣∣∣∣∣ (274)

A wave function expressed in this way is called a Slater determinant. It is a well-
known property of determinants from algebra that if we interchange two rows, the
sign of the determinant changes.40 An interchange of two rows, as can be seen, physic-
ally corresponds to an interchange of two electrons. Therefore, the Slater determinant
really ensures that the wave function changes its sign to the opposite upon interchange
of any two electrons.

In order not to have to write long formulas of the type (273) or (274) every time,
we sometimes use the expression

Ψ(1, 2, . . . , N) = Â [ϕ1(1) ϕ2(2) . . . ϕN(N)] (276)

where Â is the anisymmetrisation operator. The way how its acts on a function (on a
Hartree product), is obvious from the above explanation.

40Also if we interchange two columns. However, if we are talking about the exchange of coordinates
of electrons, then for the form (274), the exchange of rows is important. However, the columnar Slater
determinant is often used, i.e.

Ψ(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) . . . ϕ1(N)

ϕ2(1) ϕ2(2) . . . ϕ2(N)

. . . . . . . . . . . .

ϕN (1) ϕN (2) . . . ϕN (N)

∣∣∣∣∣∣∣∣∣ (275)

It is identically equal to determinant (274). For the determinant (275), an interchange of two electrons is
mathematically represented by the interchange of two columns. It is just a matter of preference whether
we use the form (274) or (275).
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In section 8.6 we learnt that two electrons cannot occupy the same one-particle
state. Therefore, for instance, the state

Ψ(1, 2, 3) = Â [ϕ(1) ϕ(2) ϕ3(3)]

(in which the first two spinorbitals are equal, i.e. ϕ1 = ϕ2 = ϕ), should have zero
probability of its realisation. If we look at expression (270), we see that in such a case
Ψ is really zero. Again, this property of determinants is know from algebra: if any two
functions of the Hartree product are the same, the corresponding Slater determinant
is identically zero. Thus, the choice of the wave function in the form of a Slater de-
terminant will also ensure the fulfilment of the Pauli principle and, as can be seen, it
is closely related to the fact that such a wave function is antisymmetric.

At the end let us note that if Hartree product (264) is an eigenstate of the effective
Hamiltonian (262),

Heff ΨHP = EΨHP

then also any state created by some permutation of the Hartree product will be an ei-
genfunction corresponding to the same eigenenergy. Then we come to the conclusion
that the corresponding antisymmetric wave function Ψ = ÂΨHP is also an eigenfunc-
tion of this Hamiltonian and corresponds to the same energyE . And let us summarise
our findings of this section: we have learnt how to produce a wave function of the cor-
rect permutation symmetry from the Hartree product (264).

9.3 The Hartree-Fock Self-Consistent Field Method

The Task To Be Solved. We have to find an approximate ground state of the N -
electron system described by the Hamiltoian

Ĥ =
N∑
i=1

ĥ(i) +
1

2

N∑
i,j=1
i ̸=j

1

|r⃗i − r⃗j|
(277)

where

ĥ(i) ≡ ĥ(r⃗i) = −∇2
i

2
+ v̂ext(r⃗i) (278)

Thus, we will be using the atomic units in this section. The Hamiltonian defines the
basis physical parameters (positions and charges of the nuclei and the number of elec-
trons) of the task to be solved. As we can see, the task is a little bit simpler comparing
the operator (258) since we neglect the spin-dependent terms. This is, however, often
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an excellent or very good approximation, especially for lighter atoms.41 This time we
will denote the many-particle eigenfunction to be determined as Φ, not Ψ. Hence, we
have to solve the task ĤΦ = EΦ [rov. (261)].

The Proposed Form of The Solution. In the Hartree-Fock method (HFM), we will
search thewave functionΦ in a form of the Slater determinant (274), that is, the function
will obey the antisymmetry requirement.42 Writing its arguments in detail, it is

Φ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN).
For practical reasons, this determinant is often written not as usually but using the
expansion (273):

Φ(1, 2, . . . , N) =
1√
N !

N !− 1∑
p=0

(−1)p ϕ1p(1) ϕ2p(2) . . . ϕNp(N) (279)

The spinorbitalsϕ1(r⃗, σ), . . . , ϕN(r⃗, σ) are the basic building blocks in out construction
of the many-body wave function Φ. They are unknown functions to be determined.

The Functional Representing the Energy for a Chosen Wave Function (279). HFM
is a particular realisation of the variational method; see section 6.1. In the sense of
this method, we will consider the function (279) as a trial function on which the vari-
ational method will be applied. The role of the variational parameters will be played
by the one-particle spinorbitals43 ϕi. If we ensured the value of the denominator of
the fraction (167) equal to 1, we could determine the total energy of the system by
minimisation of the expression

G =

∫
Φ∗(1, . . . , N) Ĥ Φ(1, . . . , N) dτ ≥ E0 (280)

where dτ ≡ dx1dx2 . . . dxN means integration over the spatial coordinates of all the
electrons and also summation over their spin coordinates. It is because at the correct

41By not considering the spin degrees of freedom in the Hamiltonian, we consider a purely non-
relativistic Hamiltonian. It is because the presence of spin follows from the relativistic quantum elec-
trodynamics. This still does not prevent us from considering the spin degrees of freedom in wave func-
tions.

42We just note that there is also the Hartree method (HM). In it, the wave function is sought in the
form of the Hartree product. This is not sufficient for electronic structure, but the HMwould be suitable
as an intermediate step to the HF method; after studying it, the HFM could be mastered more easily and
better understood. Due to lack of time, we cannot focus on the HM, but you can see it in the Appendix E.
Since it assumes a simpler form of the wave function, it is a simpler method than the HFM.

43In reality, even those will later be expressed as linear combinations of some known functions. Thus,
the corresponding coefficients will become the variational parameters, which is practical.
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normalisation ∫
Φ∗(1, . . . , N) Φ(1, . . . , N) dτ = 1 (281)

G would represent the quantum-mechanical expectation value of the energy of the
system being in the state Φ. Because the expression G depends on functions (by which
we mean ϕi), it is called a functional. We will ensure the normalisation of Φ by
demanding orthonormality of the spinorbitals:∫

ϕ∗
i (r⃗, σ)ϕj(r⃗, σ) dx ≡ ⟨ϕi|ϕj⟩ = δij , ∀i, j (282)

These conditions are a common element in the construction of the HF method [7, 8]
and facilitate its derivation. The conditions of the orthonormalitywill be satisfied using
Lagrange multipliers. Therefore, we define an augmented functional

EHF = G −
N∑

i,j=1

λij [⟨ϕi|ϕj⟩ − δij] (283)

inwhichλij are thementionedmultipliers. Thus, instead of the simpler functional (280),
we will minimise EHF. The one-particle functions ϕi standing in (279) are unknown
and our task is to determine them so that the value of EHF can be as low as possible.
Hence, the spinorbitals ϕi have, at least formally, a role of variational parameters. It
is practical to split the whole functional (283) to several terms and then simplify as
follows:

EHF = G + L = G(1) + G(2) + L (284)
where

G(1) ≡
∫

Φ∗(1, . . . , N)

[
N∑
i=1

ĥ(i)

]
Φ(1, . . . , N) dx1 . . . dxN (285)

is the contribution from the single-particle terms of the Hamiltonian,

G(2) ≡
∫

Φ∗(1, . . . , N)

[
1

2

N∑
i,j=1

′ 1

rij

]
Φ(1, . . . , N) dx1 . . . dxN (286)

is the contribution from the two-particle terms of the Hamiltonian. The prime at the
summation over i, j indicates that the cases of i = j are omitted. The third component
of the functionalEHF is the term responsible for the orthonormality of the spinorbitals:

L = −
N∑

i,j=1

λij [⟨ϕi|ϕj⟩ − δij] (287)
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We now explicitly substitute the Slater determinant (279) into these three components
of the Hartree-Fock functional EHF. We start with G(1) and obtain

G(1) =
N∑
i=1

∫
ϕ∗
i (1) ĥ(1) ϕi(1) dx1 ≡

N∑
i=1

⟨ϕi|ĥ|ϕi⟩ (288)

In order to work from definition (285) toward the final expression, eq. (288), it was
necessary in particular:
• Explicitly use the antisymmetric function (279).
• Utilise orthonormality of the spinorbitals, thanks to which only the term with p′ = p
of the sum over the permutations p′ remains non-vanishing.

• Later, it was necessary to realise in a certain step of the manipulations that in the
resulting sum over the permutations (for any chosen i), each term (each value) is
repeated (N − 1)! times. Therefore, it was possible to express the summation as
follows:

N !−1∑
p=0

something = (N − 1)!
N∑
j=1

something similar, depending on the index j,
independent of i.

• There is still the sumover i there thatwas to the left of the sumover the permutations.
The sum over i can be calculated trivially for nothing depends on the index i there.

• At the end, only the sum over j will be left there. For the elegance of the final result,
we denote this summation index to i.

Although we do not take over the Hartree method (HM), we will at least mention that
we would also come to a term of the form (288) there, and much easier, because in the
HM, the wave function has only one term.

In a similar, although a more complex way, we now begin to express the two-
particle contribution G(2) to the total functional EHF. The derivation is even longer
and really more difficult, but with proper notation and consistency in the individual
steps of the calculation, it is not extremely difficult. Here are at least a few key points.
• Again, it is necessary to use the orthonormality of the spinorbitals, thanks to which
only two non-zero terms remain from the sum over the permutations p′ (for given i
and j):
– the one with p′ = p [as it also was in the derivation of G(1)]
– also the term created by such a permutation p′ that has only the indices i and j

interchanged compared to the ordering in the permutation p; We can denoted
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it as p′0. Thus, if the permutation p is even, then the p′0 is odd and vice versa.
Consequently, p+ p′0 in the second non-vanishing term is an odd number.

• Similarly to the derivation of G(1), here it also is necessary to realise in a certain step
that, although for any chosen i, j there are N ! contributions in the summation over
the permutations p, not all of them are different from each other. Different from
each other, let us call them unique, areN(N − 1)/2 contributions for any given pair
of indices i, j. Thus, each of the unique contributions is repeated N !/[N(N − 1)/2]
times.

We arrive at

G(2) =
1

2

N∑
i,j=1

′
[ ∫

ϕ∗
i (1)ϕ

∗
j(2)

1

r12
ϕi(1)ϕj(2) dx1 dx2

−
∫
ϕ∗
i (1)ϕ

∗
j(2)

1

r12
ϕj(1)ϕi(2) dx1 dx2

] (289)

We got the two terms (apart from the fact that there are also the summations there)
because of the antisymmetry of the wave function. Therefore, the second term has
exchanged electron coordinates (or the wave function indices) and has the opposite
sign to the first term. In theHM,wewould get only the first term; youmay check (E.13).
Using the Dirac bra and ket vector notation, the writing will be shorter:

G(2) =
1

2

N∑
i,j=1

′ [〈ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
−
〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉]
(290)

In such a notation, however, it is necessary to remember on which variables the indi-
vidual functions depend and to keep the introduced order.

Thus, we have constructed the whole functional EHF = G(1)+G(2)+L to calculate
the ground-state energy:

EHF[ϕ] =
N∑
i=1

⟨ϕi|ĥ|ϕi⟩+
1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
− 1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
−

N∑
i,j=1

λij [⟨ϕi|ϕj⟩ − δij] ≥ E0

(291)

The One-Particle Contribution. The first term represents the sum of one-particle
energies, which are the kinetic energies of the electrons plus their potential energies
in the given external field, i.e. in the potential v̂ext(r⃗).
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TheTwo-Particle Contribution+
1

2
…. To know the physical meaning of the second

term, let’s write it down in more detail, using spatial integrals and summations over
the spin coordinates. In doing this, let us return for a while to the SI units. We express
the spinorbitals more explicitly employing the usual factorised form

ϕi(x) = φi(r⃗)χi(σ) (292)

in which the (usual spatial) orbitals are orthonormal and the spin functions too,44
see (212). Then, placing the integrals, sums, and other symbols as practically as pos-
sible, we get

2nd term of (291) =
1

2

N∑
i,j=1

′
∫

d3r1d3r2 φ∗
i (r⃗1)φ

∗
j(r⃗2)

1

4πε0

(−e)2

|r⃗1 − r⃗2|
φi(r⃗1)φj(r⃗2) ×

×
∑

σ1=±1

∑
σ2=±1

χ∗
i (σ1)χ

∗
j(σ2)χi(σ1)χj(σ2)︸ ︷︷ ︸

1
(293)

The double sum over the spins written in the second row is equal to 1 due to the nor-
malisation of the spin functions; for, e.g., an electron with the coordinate σ1, we have∑

σ1=±1 χ
∗
i (σ1)χi(σ1) = 1 for each index i. The expression

− eφ∗
i (r⃗1)φi(r⃗1) = ρi(r⃗1) (294)

can be, in a quantum-mechanical sense45 understood as electric charge density gen-
erated by the electron 1 in the orbital φi. Quite analogously we also see the density
ρj(r⃗2) in (293). Therefore, the 2nd term of formula (291) can be expressed as follows:

1

4πε0

1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
=

1

2

N∑
i,j=1

′
∫

d3r1d3r2
1

4πε0

ρi(r⃗1)ρj(r⃗2)

|r⃗1 − r⃗2|
(295)

We see that the integral standing there is nothing but the electrostatic Coulomb en-
ergy of the interaction of two charge distributions with the spatial densities ρi(r⃗1) and
ρj(r⃗2). That is, the purely classical contribution, well known from the basic physics
course too! For these reasons the expression (integral)

Jij ≡
〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
=

∫
d3r1d3r2 φ∗

i (r⃗1)φ
∗
j(r⃗2)

1

|r⃗1 − r⃗2|
φi(r⃗1)φj(r⃗2) > 0

(296)
44Although it might seem that there may be N different spin functions χ1, χ2, …, χN there, in fact

each of them is just either χ+ or χ−, that is chi+1 or χ−1 in the different notation.
45φ∗

i (r⃗)φi(r⃗) is not a classical density, but a probability density in the sense of the 1st postulate of
QM. In an analogous sense, −e|φi(r⃗|2 is then a charge density.
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is called the Coulomb integral [8, 11] (also Coulombic). We would obtain it also in the
HM [you may check (E.13)]. Looking at its form which employs the integral in (295)
we see, that, because of the equal signs of the interacting charges, it is really positive.
Let us conclude our discussion of expression (295) using other words: it represents the
electron-electron electrostatic Coulomb repulsion (an energy) of the givenN -electron
system.

The Two-Particle Contribution−
1

2
…. In a similar way, let us try to find a meaning

of the third term of formula (291). Doing so, we arrive at the result

−1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
= −1

2

N∑
i,j=1

′ δχiχj

∫
d3r1d3r2

φ∗
i (r⃗1)φ

∗
j(r⃗2)φj(r⃗1)φi(r⃗2)

|r⃗1 − r⃗2|

(297)
The factor δχiχj

emerged there from the contribution of the spin functions thanks to
their orthogonality and normalisation.46 This time it is not easy to get densities from the
orbitals. Therefore, the third term of formula (291) does not have any simple classical
interpretation. It emerged from the description as a consequence of the antisymmetry
of the wave function of identical fermions. Hence, it is a purely non-classical contri-
bution. The integral

Kij ≡
〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
=

= δχiχj

∫
d3r1d3r2 φ∗

i (r⃗1)φ
∗
j(r⃗2)

1

|r⃗1 − r⃗2|
φj(r⃗1)φi(r⃗2) ≥ 0

(298)

is called the exchange integral [8, 11]. Without proof, we stated that if it is nonzero, it
is positive [7], similarly as the Coulomb integral is always positive. Comparing to the
Coulomb integral, the indices of the spinorbitals i, j on the right of 1/r12 are exchanged
in the exchange integral.

46It is not complicated and not hard to get at all, one just have to proceed carefully:∑
σ1=±1

∑
σ2=±1

χ∗
i (σ1)χ

∗
j (σ2)χj(σ1)χi(σ2) =

∑
σ1=±1

χ∗
i (σ1)χj(σ1)

∑
σ2=±1

χ∗
j (σ2)χi(σ2)︸ ︷︷ ︸
δχjχi

= δχiχj
δχjχi

=

= δχiχj

Thus, the sum marked by the curled bracket is nonzero only if the spin function for the spinorbital ϕj
is the same as the spin function for the spinorbital ϕi. And the value of this summation, of course, no
longer depends on any spin coordinate; it is just a number (0 or 1). In the same way we will evaluate
the remaining summation, i.e. the one over σ1.
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Thus, the inclusion of antisymmetry leads to the exchange integral which lowers the
total energy, and therefore the Hartree-Fock method gives a lower, or better, ground
state energy than the Hartree method, in which the exchange integrals do not appear.
The term exchange interaction is also being used. However, it must not be misun-
derstood as some physical interaction, but only as a way or concept to represent the
corresponding contribution to the total energy of the system described by the single-
determinant wave function [7].

The factor δχiχj
in (297) causes that only spinorbitals with the same spins con-

tribute to the exchange interaction. It does not even make sense to consider the ex-
change interaction and the exchange integral for electrons or spinorbitals with differ-
ent spins.

Intuitively, we can partially understand the effect of the energy lowering as a con-
sequence of the Pauli repulsion: two electrons with equally oriented spins must differ
in something else, otherwise they would violate the Pauli exclusion principle. Ther-
fore, they differ in their spatial wave functions which are such (different from one
another, even mutually orthogonal) that keep the electrons apart. By this, they reduce
their Coulomb electrostatic energy and consequently also the total energy of the sys-
tem. However, a thorough understanding of the energy lowering would also have to
take into account the electrons-nuclei energies. Therefore, the above interpretation is
not accurate enough.

Finally, we remind that although the exchange interaction is non-classical in nature,
it is still derived from the classical electrostatic interaction, because the exchange in-
tegrals include the factor 1/|r⃗1−r⃗2|. Realise: the corresponding energy is just a certain
part of the quantum-mechanical exspectation value of the potential energy operator
of the electrons.

The Last Contribution to the Functional EHF – it is only present to guarantee the
orthonormality of the spinorbitals. If this is achieved, the term vanishes.

The conditions j ̸= i in the above double-summations is no longer necessary. This
can be seen from the fact that the expressions in the functional EHF

〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
and

〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
are subtracted fromone another at j = i. So, their non-physicality

does not matter, and if it suits us, we will consider summations without the condition
j ̸= i. In this context, let us see how the Coulomb sum (295) will change upon inclusion
of the terms with j = i. For this purpose, it is advantageous to move the summations
over i and j on the right of the integrals and calculate (now already without the prime
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at
∑

)
N∑

i,j=1

ρi(r⃗1)ρj(r⃗2) = ρ(r⃗1)ρ(r⃗2) (299)

where

ρ(r⃗) =
N∑
i=1

ρi(r⃗) (300)

is the total charge density from the electrons. Thus, the Coulomb contribution to EHF
augmented in this way can be expressed as follows:

1

4πε0

1

2

N∑
i,j=1

〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
=

1

2

∫
d3r1d3r2

1

4πε0

ρ(r⃗1)ρ(r⃗2)

|r⃗1 − r⃗2|
(301)

In the context of electronic-structure methods, this quantity is called Hartree energy.
It is again an electrostatic interaction of the charge density, but this time of the total
one, i.e. it also contains the non-physical contribution of the interaction of the electron
with itself (the so-called self-interaction or self-energy).

Minimisation of the Functional (and of the Energy). We want to find out at what
function ϕi the functional EHF is minimal. This is something analogous to finding
the minimum of a function, when we calculate the derivative of the function. The total
differential of the function vanishes at theminimumof the function. Here, however, we
have to look for a minimum of the functional. Therefore, wewill make variations of the
functional EHF, which means that we will examine how it changes (varies) upon small
variations of the functions ϕi which it depends on. Consider the following variation
of the functions ϕi:

ϕi −→ ϕi + δϕi (302)

The functional then varies as follows:

EHF[ϕ] −→ EHF[ϕ+ δϕ] = EHF[ϕ] + δEHF (303)
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and it could analogously be written also for its individual components G(1), G(2), and
L. Hence, the sum of the one-particle integrals in (288) gets

G(1)[ϕ] −→ G(1)[ϕ+ δϕ] =
N∑
i=1

∫
(ϕi + δϕi)

∗ ĥ(i) (ϕi + δϕi) dx =

= G(1)[ϕ] +
N∑
i=1

∫
δϕ∗

i ĥ(i) ϕi dx+
N∑
i=1

∫
[ĥ(i) ϕi]

∗δϕi dx︸ ︷︷ ︸
δG(1)

+ (304)

+ terms in 2nd order in δϕk , which are negligible

Note that the second term in δG(1) is complex conjugate (c.c.) to the first one. So, we
obtain

δG(1) =
N∑
i=1

⟨δϕi|ĥ|ϕi⟩+ c.c. (305)

In calculations with two-particle integrals too, we will omit writing the arguments of
the functions ϕ in some places for the sake of brevity. We again remind ourselves
that it is necessary to remember which function depends on xi ≡ r⃗i, σi (briefly i) and
which on xj . For the variation of the sum of the two-particle integrals (289) we get,
using a procedure in a manner similar to the above one, only more complex, the fol-
lowing result [using that rij = rji and that we can arbitrarily rename and interchange
summation indices (i↔ j) with one another]:

δG(2) =
N∑

i,j=1

′
∫
δϕ∗

i ϕ
∗
j

1

r12
ϕi ϕj dx1 dx2 +

N∑
i,j=1

′
∫
ϕ∗
i ϕ

∗
j

1

r12
δϕi ϕj dx1 dx2

−
N∑

i,j=1

′
∫
δϕ∗

i ϕ
∗
j

1

r12
ϕj ϕi dx1 dx2 −

N∑
i,j=1

′
∫
ϕ∗
i ϕ

∗
j

1

r12
δϕj ϕi dx1 dx2

(306)

Note that the second terms in each row are complex conjugate to the firts terms. In
the compact notation, we write down this variation as follows:

δG(2) =

[
N∑

i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕi ϕj⟩+ k.z.

]
−

[
N∑

i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕj ϕi⟩+ k.z.

]
(307)

To evaluate also the variation of the functionalEHF, not only ofG, it remains to evaluate
the variation of the termwith the Largrangemultiplier, see (287). This can be calculated
easily, resulting to

δL = −
N∑

i,j=1

λij⟨δϕi|ϕj⟩ + k.z. (308)
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Now we are able to write what the variation of the whole functional EHF, that is the
value of

δEHF = EHF[ϕ+ δϕ]− EHF[ϕ] = δG(1) + δG(2) + δL (309)
is equal to. To accomplish this, we need to collect the results (304), (306) and (308). We
arrive at

δEHF =
N∑
i=1

⟨δϕi|ĥ|ϕi⟩+
N∑

i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕi ϕj⟩ −

N∑
i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕj ϕi⟩

−
N∑

i,j=1

λij⟨δϕi|ϕj⟩ + c.c.
(310)

and we better rewrite this result using integrals and at the same time we pull the com-
mon parts to the left:

δEHF =
N∑
i=1

∫
dx1 δϕ∗

i (1)

[

ĥ(1)ϕi(1) +
N∑
j=1

′
∫

dx2 ϕ∗
j(2) r

−1
12 ϕi(1)ϕj(2)−

N∑
j=1

′
∫

dx2 ϕ∗
j(2) r

−1
12 ϕj(1)ϕi(2)

−
N∑
j=1

λij ϕj(1) (311)]
+ c.c.

where c.c. denotes the terms complex conjugate to the former ones. We keep writing
the primes at the sums, that is, we are omitting summations over j = i although this
is no longer necessary.

As we have said before, we are trying to find out for what functions ϕi is the func-
tional EHF is minimal. Just as a function has zero first derivative around its extremal
point, ie zero change in the first order, so a functionial around its extremum has van-
ishing variation. Therefore, in order to find the minimising spinorbitals ϕi, we require

δEHF = 0 (312)

To satisfy this for any small variations δϕi,

the expression in the square brackets (311) must vanish. (313)

Before we write down zeroness of the expression in the square brackets, we introduce
two important terms and their notation, so that we can properly write the integrals
over x2 in the square brackets in (311).
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The Coulomb Operator. The expression

Ĵj(1) =

∫
dx2 ϕ∗

j(2) r
−1
12 ϕj(2) =

∫
d3r2 φ∗

j(r⃗2)
1

|r⃗1 − r⃗2|
φj(r⃗2) (314)

is called the Coulomb operátor. Its name comes from the fact that it expresses (in the
atomic units) the Coulomb electrostatic energy of an electron located at point r⃗1 with
an electron cloud that is created by the wave function ϕj . It can be seen from for-
mula (314) that it is an operator expressed by real numerical values; it is a real function
of the variable r⃗1. Hence, the Coulombov operátor is hermitian.

The Exchange Operator. The second term in the square brackets of (311) is more
complicated than the first one. We will define the corresponding operator indirectly
only, through its effect on the spinorbital. The form of this operator will look rather
artificially and is motivated by the equations being easy to write. The square brack-
ets in the following definition (it is the framed part) are not necessary but they are
convenient for clarity.

K̂j(1)ϕi(1) =

[∫
dx2 ϕ∗

j(2) r
−1
12 ϕi(2)

]
ϕj(1) =

=

[
δχjχi

∫
d3r2 φ∗

j(r⃗2)
1

|r⃗1 − r⃗2|
φi(r⃗2)

]
φj(r⃗1)χj(σ1)

(315)

The operator K̂j is called the exchange operator. Its name comes from the fact that it is
located in the term of the functional that was created by exchanging the coordinates
of the two electrons. The presence of this operator stems from the indistinguishability
of electrons and from the requirement of antisymmetry of the wave function, and is
therefore of a non-classical nature. At the same time, however, it is a manifestation of
electrostatic interaction, since the expression r−1

12 is found in this operator. Although
it may seem that the K̂j operator should also carry the index i of the function it acts
on, it is not the case.47 K̂j(1) processes any function it acts on by integrating it over
x2 and also produces the function ϕj(1). It is therefore an operator that depends on ϕj ,

47The formal expression of the symbol K̂j depends on i of that spinorbital and therefore it might seem
that the exchange operator should also get the index i:

K̂(i)
j (1) =

[∫
dx2 ϕ∗j (2) r−1

12 ϕi(2)

]
ϕj(1)

ϕi(1)
(316)

For a better understanding of the exchange operator, realise that it can act on any function, not just
the spinorbitals ϕi. Let us first consider any function ϕ(x) expressible as a linear combination of our
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processes any given function (for instance ϕi) in a defined way and there is no reason to
put the symbol of the function on that it is currently acting, on the operator notation.
Directly from definitions 3 and 4 in section 1.2.4, we can easily prove that the exchange
operator is also hermitian.

The Hartree-Fock Equations. Equation (313) can now be written as follows:[
ĥ(1) +

N∑
j=1

′ Ĵj(1)−
N∑
j=1

′ K̂j(1)

]
ϕi(1) =

N∑
j=1

λij ϕj(1) (320)

This system of equations is called the Hartree-Fock equations (HFE) [7]. It will be pos-
sible to simplify it even more to the so-called canonical form in which λij ∝ δij ; there-
fore the summation on the right-hand side will disappear. The term in the square
brackets is called the Fock operator:

f̂(1) = ĥ(1) +
N∑
j=1

[
Ĵj(1)− K̂j(1)

]
(321)

As mentioned above, it is not necessary to omit the values with i = j in the summa-
tions. This is and important simplifications because, thanks to it, there is only one and

spinorbitals:

ϕ(x) =

N∑
k=1

ckϕk(x) (317)

Then we express the effect of the exchange operator on ϕ(x) due to its linearity as follows:

K̂j(1)ϕ(1) =

N∑
k=1

ckK̂j(1)ϕk(1) =

N∑
k=1

ck

[∫
dx2 ϕ∗j (2) r−1

12 ϕk(2)

]
ϕj(1) =

=

[∫
dx2 ϕ∗j (2) r−1

12

N∑
k=1

ckϕk(2)

]
ϕj(1)

(318)

i.e.

K̂j(1)ϕ(1) =

[∫
dx2 ϕ∗j (2) r−1

12 ϕ(2)

]
ϕj(1) (319)

It can be seen that nothing prevents us from extending the definition of the exchange operator so that it
can act on any function of the variable x1, not only on the above-mentioned linear combination (317).
The action of the exchange operator K̂j(1) must therefore be understood as creating the spinorbital
ϕj(1) and multiplying it by the number

∫
ϕ∗j (2) r

−1
12 ϕ(2) dx2. This number therefore depends on the

function on that K̂j(1) acts.
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the same Fock operator in the HFE48 that acts on each spinorbital ϕi and the HFE can
then be written down briefly:

f̂(1)ϕi(1) =
N∑
j=1

λij ϕj(1) (322)

Finally, realise that the Fock operator is hermitian. This comes as a consequence of
ĥ(1), Ĵj(1) and K̂j(1) being hermitian operators.

Solution of the HFE. The Self-Consistent Field. The HFE is a system of N integro-
differential equation for the unknow functions ϕi. Thus, by solving these equations
we find the functions that minimise the functional EHF. In such case, the value of this
functional is an approximate energy of the ground state of the system. We do not have
enough time in this course to properly study the ways how to solve the HFE, so we
will describe them only in a roughest sketch.

In principle, the HFE are solved using subsequent iterations: in the beginning, we
choose some guess functions

ϕ
(0)
1 , ϕ

(0)
2 , . . . , ϕ

(0)
N (323)

For instance, if we solve theHFE for an atom, we can take the exactly know spinorbitals
of a hydrogen-like ion as the initial guess ϕ(0)

i . We then determine the initial Fock
operator using the guess functions (the operator is certainly not good yet). Using
the Fock operator, we then determine (in a manner not specified here) more accurate
(although still very rough) spinorbotals

ϕ
(1)
1 , ϕ

(1)
2 , . . . , ϕ

(1)
N (324)

Using these, we again construct the Fock operator; it should now be more closer to the
accurate one. And so on, and so on, we do the iterations and once we finish. We can
make the decision to finish, for example, if the difference between two outputs of the
subsequent iterations becomes negligible. Then the spinorbitals ϕi will be consistent
with the Fock operator. The resulting elecrostatic field from the considered electrons
is called self-consistent field (SCF). Thus, each electron moves in this SCF. It is actually
a field created by QM averaging of the field from the other electrons and, in addition,
the field from the nuclei is also accounted for. The termmean field49 is also being used,
although in also a more general sense.

48This is an essential difference and perhaps also a surprising simplification in comparison to Hartree
equations (E.29).

49also in statistical physics
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An alternative, and nowadays more and more frequently used way to solve the
HFE, is the direct minimisation of the HF functional. The advantage of this method is
its higher robustness, as it is a direct application of the variation principle.

The Energy of the Ground State. This energy is given by the minimum of the func-
tional (291). Because ϕi are orthogonal, we obtain (assuming that they are the minim-
ising spinorbitals)

EHF =
N∑
i=1

⟨ϕi|ĥ|ϕi⟩+
1

2

N∑
i,j=1

〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
− 1

2

N∑
i,j=1

〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
(325)

Using the expressions (314) and (315) for the Coulombov and exchange operators, we
can also write the HF energy as follows:

EHF =
N∑
i=1

∫
dx ϕ∗

i (x)

{
ĥ(x) +

1

2

N∑
j=1

[
Ĵj(x)− K̂j(x)

]}
ϕi(x) (326)

The difference between the exact non-relativistic energy and the Hartree-Fock energy
is called the correlation energy:

Ecorr = E0 − EHF < 0 (327)

(Here we consider a ground state only.) Its magnitude is small in comparison with the
magnitude of the total energy E0, of the order of e.g. one percent of the total energy.
Nevertheless, the effects associated with electron correlation use to be important. De-
termining the ground state energy and wave function beyond the HF method is still
a major and fundamental challenge in the study of electronic structure. In cases of
large systems (large molecules, clusters or crystals), it often happens that even current
methods and computational resources do notmake it possible to calculate satisfactorily
ground-state energy and wave function of a given system.
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9.4 AMathematical Excursion: Matrix Representations, Unitary Trans-
formations

We have not taken too much from this section (9.4), only those
parts that are written in the larger font. By the way, these
parts are just a simple generalization of what has been taken
over in the Computational Physics course about diagonalisation
of a symmetric matrix and expressing this diagonalization by an
orthogonal transformation. The generalisation of a symmetric
matrix is hermitian matrix. The generalisation of an orthogonal
matrix is a unitary matrix.

Matrix representations. Majme sadu navzájom lineárne nezávislých funkciíφn tvoriacich
úplnú sústavu funkcií ; úplnú aspoň v tom zmysle, že pomocou ich lineárnej kombinácie
vieme s požadovanou presnosťou vyjadriť ľubovoľnú funkciu, ktorú pri štúdiu daného
problému vyjadriť potrebujeme. Tú sústavu (sadu, postupnosť) funkcií potom nazývame
báza. Samotné funkcie voláme bázové funkcie. Okrem lineárnej nezávislosti predpok-
ladajme aj ich vzájomnú ortogonálnosť a normovanosť na 1:∫

φ∗
mφn dτ = ⟨φm|φn⟩ = δmn (328)

pričom integrujeme cez bližšie nešpecifikované premenné, od ktorých tie funkcie závisia.
Tých integračných premenných môže byť veľa a nemusia byť len spojité (ako napr. x, y,
z), ale môžu byť medzi nimi aj spinové súradnice, v prípade ktorých sa sumuje, nie inte-
gruje. Symboly ako napr. φn nazývame funkcie. Závisia od konkrétnych premenných,
napr. x, y, z. Abstraktné zápisy ako |φn⟩ nazývajme vektory.

Uvažujme ľubovoľný lineárny operátor Â. Pôsobme ním na ľubovoľnú funkciu f
takú, ktorá sa dá vyjadriť ako lineárna kombinácia bázových funkcií φn. Výsledkom
bude nejaká iná funkcia. Označíme si ju g:

Âf = g , t. j. Â|f⟩ = |g⟩ (329)

Keďže {φn} je úplná sústava, aj g sa musí dať vyjadriť ako ich lineárna kombinácia.
Zapíšme to pre obe tie funkcie takto:

f =
∑
n

fnφn , g =
∑
n

gnφn (330)

kde fn a gn sú koeficienty v tých lineárnych kombináciách (rozvojové koeficienty).50
Dosaďme tieto rozvoje do (329). Dostaneme

Â
∑
n

fnφn =
∑
n

gnφn

50Netreba si ich teda popliesť s nejakými funkciami. Inde sme totiž symboly typu fn používali ako
bázové funkcie, pričom rozvojové koeficienty sme značili inak; pozri napr. stať 6.1.1 o variačnej metóde.
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Lineárny operátor prejde cez rozvojové koeficienty (nejaké komplexné čísla) triviálne
podľa Definície 2 (10). Tak dostaneme∑

n

fnÂφn =
∑
n

gnφn (331)

Pôsobením Â na bázovú funkciuφn vznikne funkcia Âφn, ktorá sa tiež dá zapísať v danej
báze:

Âφn =
∑
k

Akn φk (332)

Príslušné rozvojové koeficienty sme teda označili Akn. Index n je tam potrebný, lebo ide
o rozvoj funkcie φn. Pri pôsobení Â na inú bázovú funkciu, napr. na φn′ , by sme totiž
dostali iné rozvojové koeficienty (Akn′ ), a preto ich treba označovať aj indexom bázovej
funkcie, na ktorú pôsobia. Dosaďme rozvoj (332) do (331):∑

n

fn
∑
k

Aknφk =
∑
n

gnφn

Prenásobme túto rovnicu zľava funkciou φ∗
m a preintegrujme:∑

n

∑
k

fnAkn

∫
φ∗
mφk dτ =

∑
n

gn

∫
φ∗
mφn dτ

Využijeme ortonormalitu (328) bázových funkcií, čím dostaneme

∑
n

Amnfn = gm (333)

To je sústava algebraických rovníc, ktoré dávajú do vzťahu tri rôzne sady rozvojových
koeficientov. Sady koeficientov fn, gn definované rovnicami (330) sa dajú zapísať aj ako
stĺpcové vektory. Koeficienty Amn zasa tvoria štvorcovú maticu. Ak si počet bázových
funkcií označíme N a indexovať začneme od 1, tak posledne napísaná sústava sa dá za-
písať aj maticovo-vektorovo:A11 . . . A1N

...
...

AN1 . . . ANN


 f1

...
fN

 =

 g1
...
gN

 (334)

Aj (333) je maticovo-vektorový zápis, ale v zložkách. Aby sme plne pochopili aj význam
koeficientov Amn, vráťme sa ku rovnici (332), ktorou boli definované. Prenásobme ju
zľava funkciou φ∗

m a preintegrujme:∫
φ∗
mÂφn dτ =

∑
k

Akn

∫
φ∗
mφk dτ =⇒ Amn =

∫
φ∗
m Â φn dτ = ⟨φm|Â|φn⟩

(335)
Keď teraz porovnáme abstraktnú rovnosť (329) so zápisom (333) alebo (334), môžeme
skonštatovať, že tie maticovo-vektorové zápisy predstavujú istú reprezentáciu abstrakt-
ného zápisu (329). Matica A s prvkami (335) je maticovou reprezentáciou operátora Â
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v nami použitej báze {φn}. Vektor s prvkami fn je reprezentáciou funkcie f v danej báze.
Obdobne vektor prvkov gn.

Ak chceme explicitne vedieť, ako určíme koeficienty fn, gn, zoberieme definičné
rovnice (330), prenásobíme ich zľava φ∗

m, preintegrujeme a dostaneme (po premenovaní
indexu)

fn =

∫
φ∗
n f dτ = ⟨φn|f⟩ , gn =

∫
φ∗
n g dτ = ⟨φn|g⟩ (336)

Ešte sa pozrime na maticovú reprezentáciu súčinu dvoch operátorov: Ĉ = ÂB̂. Nech
Ĉ = ÂB̂ pôsobí na nejakú funkciu f , následkom čoho vznikne funkcia h: Ĉf = h.
V reprezentácií pomocou danej bázy to zapíšeme∑

n

Cmnfn = hm (337)

Ako vyjadríme Cmn pomocou maticových prvkov Amn a Bmn? Pomocou vyjadrenia
Cmn =

∫
φ∗
mÂB̂φn dτ nie je ťažké sa dopracovať k výsledku

Cmn =
∑
k

AmkBkn (338)

t. j. ide o bežné násobenie matíc, C = AB, čo je aj intuitívne očakávaný výsledok.
Ešte doplňme, že podľa Vety 2 – pozri (12) – pre ľubovoľný lineárny operátor Â, ku

ktorému existuje hermitovsky združený, platí∫
φ∗
mÂφn dτ =

∫
(Â†φm)∗φn dτ =⇒ A∗

mn = (A†)nm (339)

Maticovou reprezentáciou hermitovsky združeného operátora teda je maticaA†, ktorá je
transponovaná a navyše komplexne združená ku matici A. V špeciálnom prípade, ak by
sme mali nejaký hermitovský operátor Ĥ , t. j. platilo by

Ĥ† = Ĥ (340)

tak pre ich maticové reprezentácie by sme dostali

H∗
mn = Hnm (341)

z čoho vyplýva, že diagonálne prvky sú reálne. To je známa a dôležitá vlastnosť her-
mitovských matíc a úzko súvisí s tým, že vlastné hodnoty hermitovského operátora sú
reálne čísla.

Unitary Transformations.

Definícia 7: Lineárny spojitý [2] operátor Û sa nazýva unitárny, ak k nemu existuje inverzný
operátor Û−1 a platí

Û†Û = 1̂ (342)

kde 1̂ je jednotkový operátor.
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Čiže Û−1 = Û† a následne dostávame, že platí aj Û Û† = 1̂. Pre maticové reprezentácie
v nejakej zvolenej ortonormovanej báze potom musí platiť

U†U = UU† = I (343)

kde I je štvorcová matica, ktorá má na diagonále jednotky a všade inde nuly (jednotková
matica). Významnoumatematickou vlastnosťou unitárnych operátorov je, že zachovávajú
skalárny súčin. Nech |f⟩ a |g⟩ sú nejaké vektory. Unitárne transformované vektory sú

|f ′⟩ = Û |f⟩ , |g′⟩ = Û |g⟩ (344)

Potom

⟨f ′|g′⟩ =
∫
f ′∗g′ dτ =

∫ (
Ûf
)∗ (

Ûg
)

dτ =

∫
f∗Û†

(
Ûg
)

dτ =

∫
f∗g dτ

teda
⟨f ′|g′⟩ = ⟨f |g⟩ (345)

Aj maticový element nejakého operátora Â, teda číslo

⟨f |Â|g⟩

je skalárny súčin, konkrétne súčin vektorov |f⟩ a Â|g⟩. Preto samaticové elementymusia
unitárnou transformáciou zachovávať. Počítajme, čo z toho vyplynie.

⟨f |Â|g⟩ =
∫
f∗Â g dτ =

∫
f∗Û† Û Â Û†︸ ︷︷ ︸

Â′

Ûg︸︷︷︸
g′

dτ =

∫
f∗Û†Â′g′ dτ

=

∫ (
Ûf
)∗
Â′g′ dτ =

∫
f ′∗Â′g′ dτ

teda
⟨f ′|Â′|g′⟩ = ⟨f |Â|g⟩ (346)

Zavedené označenie
Â′ = Û Â Û† (347)

teda treba rozumieť ako unitárne transformovaný operátor Â. Operátory sa teda unitárne
transformujú tak, že ich treba násobiť zľava aj sprava unitárnymi operátormi Û a Û†.
A tak isto to bude aj s maticovými reprezentáciami operátorov: ak A je matica reprezen-
tujúca operátor Â aU ,U† súmatice reprezentujúce unitárne operátory Û , Û†, tak unitárne
transformovaná matica bude A′ = UAU†.

An extremely important feature of hermitian matrices is that they can be diagonalised
by unitary transformations. It should be understood as follows: LetH be a hermitian
N×N matrix. Then is hasN eigenvalues, in general different from each other. Denote
them by E1, …, EN , According to Theorem 4 of section 1.2.5, they are real. The corres-
ponding eigenvectors are columnar. Suppose that j-th eigenvector has its components
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denoted by Xij , i ∈ {1, . . . , N}, and, of course, also j ∈ {1, . . . , N}.H11 . . . H1N
... ...

HN1 . . . HNN


X1j

...
XNj

 = Ej

X1j
...

XNj

 , j ∈ {1, . . . , N} (348)

According to Theorem 5, in section 1.2.5, the individual vectors are orthogonal to each
other and we will normalise them to 1, so they will be orthonormalised. When we
stack all the N eigenvectors next to each other, we get the square matrix

X =

X11 . . . X1N
... ...

XN1 . . . XNN

 (349)

We express the mentioned orthonormality of the eigenvectors, specifically of the i-th
one to the j-th one as follows:

(X∗
1i, . . . , X

∗
Ni)

X1j
...

XNj

 = δij , i.e.
N∑
k=1

X∗
kiXkj = δij , i, j ∈ {1, 2, . . . , N}

(350)
The last written system of equations for the orthogonality can be rewritten in the form

N∑
k=1

(X†)ikXkj = δij , i, j = 1, 2, . . . , N (351)

using the compact notation X†X = I , which corresponds to the definition of the
unitary operator [cf. (342)]; specifically, we now have the operator represented by the
matrix X . I is the identity matrix51 N × N . Thus, we have proved this important
finding:

Eigenvectors of a hermitian matrix form a unitary matrix.

Using theX , (348), which is a system of systems of equations, can bewritten as follows:H11 . . . H1N
... ...

HN1 . . . HNN


X11 . . . X1N

... ...
XN1 . . . XNN

 =

X11 . . . X1N
... ...

XN1 . . . XNN


E1 . . . 0

... ...
0 . . . EN


(352)

51not a unit or unity matrix! A unit matrix is such that has units (1) everywhere.
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or compactly
HX = Xdiag(E) (353)

where diag(E) is a matrix that has the values E1, …, EN on its diagonal and zeros
everywhere else. Let us now multiple the last equation by the matrixX† from the left.
Because it is unitary, we get

diag(E) = X†HX (354)

Thus, the diagonal matrix of the eigenvalues of the hermitian matrix H is obtained
by a certain unitary transformation of the matrix H . Specifically, by such a unitary
transformation, whose matrix is equal to (349). Therefore, calculation of eigenvalues
of a matrix is often being called diagonalisation of the matrix. In doing this, we can
also calculate the eigenvectors. Usually we can calculate both the eigenvalues and the
eigenvectors with one iterative algorithm [9].

A special case of a hermitian matrix is the symmetric matrix. This is when H is
real. And analogously, a special case of a unitary matrix is the orthogonal matrix.
This one is also real. Thus, a symmetric matrix can be diagonalised by an orthogonal
transformation.

9.5 The Canonical Form of the Hartree-Fock Equations

Again, in this part you only need to look at what is typeset in
the larger font.

Imagine that we have solved the HF equations, (322). Hence we know the
single-particle spinorbitals ϕi as well as the matrix λ. Recall, however, that we were
concerned with determining the wave function and the eigenenergy of the ground
state of a many-particle system defined by Hamiltonian (277), i.e. we were trying to
find an (approximate) solution of the problem ĤΦ = EΦ for the ground state. We
were searching that many-particle function in the form of a Slater determinant (274)
[or (275)] and the approximate ground-state energy is given by the minimum of the
functional (291); it is sufficient to substitute the determined optimal spinorbitals into
it.

Let us try to investigate what happens to the determinantal wave function Φ if we
apply some unitary transformation to the spinorbitals ϕi [7].U11 . . . U1N

... ...
UN1 . . . UNN


ϕ1

...
ϕN

 =

ϕ′
1
...
ϕ′
N

 (355)
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We get some new spinorbitals which we denoted by ϕ′
i. Briefly, we accomplished the

transformation

{ϕi} −→ {ϕ′
i} , kde ϕ′

i =
N∑
j=1

Uijϕj (356)

What will be the value of the determinant Φ′ composed of the transformed spinorbit-
als?

Najprv si zapíšmematicu, ktorú používame pri skladaní Slaterovho determinantuΦ podľa (275).
Označme juM :

M =

ϕ1(1) . . . ϕ1(N)
...

...
ϕN (1) . . . ϕN (N)

 (357)

Všimnime si, že maticu transformovaných spinorbitálov ϕ′i teraz dostaneme maticovým
násobením:U11 . . . U1N

...
...

UN1 . . . UNN


ϕ1(1) . . . ϕ1(N)

...
...

ϕN (1) . . . ϕN (N)

 =

ϕ′1(1) . . . ϕ′1(N)
...

...
ϕ′N (1) . . . ϕ′N (N)

 (358)

alebo stručne a s prehodeným poradím strán takto:

M ′ = UM (359)

Z algebry je známe, že pre (štvorcové) matice platí

det(AB) = det(A) det(B) (360)

Preto
det(M ′)︸ ︷︷ ︸

Φ′

= det(U) det(M)︸ ︷︷ ︸
Φ

(361)

Pre unitárne matice z definície platí

U†U = I

Preto
1 = det(U†) det(U) = [det(U)]∗ det(U) = | det(U)|2

čiže sa dá písať
det(U) = eiϱ (362)

kde ϱ je nejaké reálne číslo (ktorého hodnotu sme nezistili, ale ani nie je dôležitá).

According to (361), the transformed Slater determinant will be

Φ′ = Φeiϱ (363)
that is, it differs from the original one by a phase factor only. However, it is known from
QM that multiplying the wave function of a system by any constant (of magnitude 1
for correct normalisation) does not change anything on the physical properties of the
system.
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Naozaj: ak nejaká Ψ(t) je riešením SchR

ih̄∂Ψ(t)

∂t
= Ĥ(t)Ψ(t) (364)

tak vynásobením tejto rovnice ľubovoľnou konštantou napr. tvaru eiϱ vidíme, že aj
Ψ′(t) = Ψ(t)eiϱ je riešením SchR pre ten istý hamiltonián. A úplne obdobne to platí
aj pre stacionárnu SchR a náš jednodeterminantový stav Φ.

Therefore, if we find some spinorbitals {ϕi}N1 using the HF method and then we
calculate some new spinorbitals from them by an arbitrary unitary transformation,
then these new ones will in principle be as good a solution of the HF equations as the
original spinorbitals. True physical significance has the many-particle wave function,
not the single-particle spinorbitals. These are just auxiliary “building blocks” to ex-
press the many-particle wave function. Since energy is a physical quantity, it must
be conserved in unitary transformations of spinorbitals; is invariant under them. We
would easily be convinced of this by explicit calculation by evaluating the functional
EHF[ϕ] (291) for ϕ′. We would get EHF[ϕ

′] = EHF[ϕ].
It turns out the the Fock operator (321) is invariant under unitary transforma-

tions of the spinorbitals (it does not change if we replace ϕi with ϕ′
i).

Ideme to dokázať. Najprv sa pozrime na člen ĥ(1) vo Fockovom operátore. Tento člen od
spinorbitálov nezávisí, a teda je, celkom triviálne, invariantný voči ich zmenám. Ďalšou
skupinou členov je súčet Coulombových operátorov. Počítajme, aký bude, keď ho vyjad-
ríme pomocou transformovaných spinorbitálov (356).

N∑
j=1

Ĵ ′
j (1) =

N∑
j=1

∫
dx2 ϕ′∗j (2) r−1

12 ϕ
′
j(2) =

N∑
j=1

∫
dx2

N∑
k,l=1

U∗
jkUjl ϕ

∗
k(2) r

−1
12 ϕl(2) =

=

∫
dx2

N∑
k,l=1

ϕ∗k(2) r
−1
12 ϕl(2)

N∑
j=1

U∗
jkUjl︸ ︷︷ ︸
δkl

=

∫
dx2

N∑
k=1

ϕ∗k(2) r
−1
12 ϕk(2) =

N∑
j=1

Ĵj(1)

Súčet Coulombových operátorov je teda invariantný voči ľubovoľnej unitárnej trans-
formácii spinorbitálov. Ešte overme invariantnosť súčtu výmenných operátorov. To sa
spraví trochu náročnejšie, lebo výmenný operátor má zložitejšie štruktúrovanú formu;
pozri poznámku 47 pod čiarou a rovnice (315), (316), (317), (318) a (319). Počítajme teda
pôsobenie K̂′

j(1) na ľubovoľnú funkciu ϕ:

N∑
j=1

K̂′
j(1)ϕ(1) =

N∑
j=1

∫
dx2 ϕ′∗j (2) r−1

12 ϕ(2)ϕ
′
j(1)

=

N∑
j=1

∫
dx2

[
N∑

m=1

U∗
jmϕ

∗
m(2)

]
r−1
12 ϕ(2)

[
N∑

n=1

Ujnϕn(1)

]
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Tak isto ako pri dokazovaní invariantnosti Coulombovho operátora, aj tu sa suma cez j
dá vypočítať, teda

N∑
j=1

U∗
jmUjn = δmn

Tak dostávame
N∑
j=1

K̂′
j(1)ϕ(1) =

N∑
j=1

K̂j(1)ϕ(1)

pre ľubovoľnú funkciu ϕ. Aby toto mohlo byť splnené, musí platiť aj

N∑
j=1

K̂′
j(1) =

N∑
j=1

K̂j(1) (365)

čiže aj súčet výmenných operátorov je invariantný voči U . Tak zisťujeme, že Fockov
operátor (321) je tiež invariantný, čo bolo treba dokázať.

Now take the HF equations in their compact form (322) and write them down in the
matrix-vector notation:

f̂(1)

ϕ1(1)
...

ϕN(1)

 =

λ11 . . . λ1N
... ...

λN1 . . . λNN


ϕ1(1)

...
ϕN(1)

 (366)

or compactly
f̂(1)ϕ⃗(1) = λ ϕ⃗(1) (367)

We multiply the last written equation from the left by the unitary matrix and insert
the identity matrix in the form U †U into the equation (by this, nothing is changed but
the identity matrix is suitable to be inserted there):

f̂(1)Uϕ(1) = U λU †U ϕ(1) (368)

On the left-hand side, it was correct to interchange the matrix U , contaning numerical
quantities only, with the operator f̂ [f̂(1) is just a single-component operator, not a
matrix or vector]. The matrix λ is hermitian; it must be, otherwise the functional EHF
would not be real, but it is defined as real. We have learn above that a hermitian matrix
can be diagonalised by a unitary transformation. Hence, also for our matrix λ there
exists a unitary transformation that accomplishes its diagonalisation. So we get

f̂(1)ϕ′(1) = diag(E) ϕ′(1) (369)
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where diag(E) is a matrix that has the eigenvalues of the matrix λ on the diagonal and
zeros everywhere else. If we write it down in components and without the primes for
simplicity, we arrive at

f̂(x)ϕi(x) = Ei ϕi(x) (370)

This is the canonical form of the HF equations. We obtained it using a unitary trans-
formation of the originaly found spinorbitals. Thus, the spinorbitals are not the same
as in (320), but for simplicity we use the same notation for the canonical orbitals. How-
ever, the operator f̂ is the same because ot its invariance. As we have said above, the
original spinorbitals yield the same energy EHF as the new, transformed ones. Thus,
it cannot be said that some are more physical than the other. But some (usually the
diagonalising ones) may be more practical than others.

Especially in quantum chemistry, the HFE are a basis or starting calculation for
several more accurate (but computationally more demanding) ab initio methods.52

9.6 Interpretation of the Solutions of the HF Equations

Also in this part you only need to look at what is typeset in
the larger font.

The solutions of HF equations (370) are the spinorbitals ϕi and the eigenener-
gies Ei. An important following result is also the approximate energy EHF [see (325)
of the ground state of the system under study. The many-body wave function Φ is
rarely evaluated; it is not necessary, it is sufficient to work with the single-particle
spinorbitals. Using them, as we have seen, the energy EHF can be calculated as well
as other physical quantities. As we have found out and stated beneath equation (364),
the spinorbitals alone do not have an unambiguos physical significance. The canonical
HF spinorbitals obtained by solving (370) are no more physical than any other related
to them by a unitary transformation. Nevertheless, either the canonical spinorbitals
(or only the corresponding orbitals) or some convenient unitarily transfomed ones
exhibiting certain localisation in accordance with our intuition, can often be useful
for better understanding chemical bonds or at least to give valuable intuitive insights.
Such considerations, however, sometimes do not have a sufficient rational basis.

52Clasically [ab iˈnitió], in later times [ab iˈnicio/iˈnício]; this is a term (from Latin) being used in
scientific literature. In English, they alternatively use the term first principles; these are thus methods
that calculate the electronic structure only from the basic laws of physics, i.e. from the SchE, without a
use of empirical parameters or formulae. An ab initio method is primarily the Hartree-Fock one, which
is, however, relatively inaccurate because it does not include the correlation energy.
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9.6.1 The Orbital Energies and the Total Energy

(We should talk about spinorbital energies, because the Ei that we found, corres-
pond to spinorbitals. But for brevity, let us call them orbital energies.)

Z kanonických HF rovníc (370), v ktorých vystupuje Fockov operátor (321), dostávame

Ei = ⟨ϕi|f̂ |ϕi⟩ = ⟨ϕi|ĥ|ϕi⟩+
N∑
j=1

[
⟨ϕi|Ĵj |ϕi⟩ − ⟨ϕi|K̂j |ϕi⟩

]
(371)

Orbitálnu energiu Ei môžme interpretovať ako energiu elektrónu obsadzujúceho stav ϕi
nachádzajúceho sa v elektrostatickom vonkajšom poli plus v spriemerovanom poli ostat-
ných N − 1 elektrónov a mínus výmenná energia. Za Coulombov a výmenný operátor
dosadíme podľa ich definícií (314) a (315). Zároveň si aj zavedieme štandardné kom-
paktné značenie pre jedno a dvojčasticové maticové elementy, ktoré veľmi zostručňuje
zápis a používa sa najmä v HF teórii. Pomerne kompaktné značenie sme zaviedli už
rovnicou (290), najmä v porovnaní s (289). Štandardne sa však v učebniciach kvantovej
chémie používa ešte stručnejší zápis [7], a to buď „fyzikálny“ alebo „chemický“. My si
uvedieme ten fyzikálny:

⟨i|h|j⟩ = ⟨ϕi|h|ϕj⟩ =

∫
dx ϕ∗i (x) ĥ ϕ∗j (x) (372)

⟨ij|kl⟩ = ⟨ϕiϕj |ϕkϕl⟩ =

∫
dx1 dx2 ϕ∗i (x1)ϕ∗j (x2) r−1

12 ϕk(x1)ϕl(x2) (373)

⟨ij||kl⟩ = ⟨ij|kl⟩ − ⟨ij|lk⟩ =
∫

dx1 dx2 ϕ∗i (x1)ϕ∗j (x2) r−1
12 [ϕk(x1)ϕl(x2)− ϕl(x1)ϕk(x2)]

(374)

Orbitálne energie teraz môžeme zapísať takto:

Ei = ⟨i|h|i⟩+
N∑
j=1

( ⟨ij|ij⟩ − ⟨ij|ji⟩ ) = ⟨i|h|i⟩+
N∑
j=1

⟨ij||ij⟩ (375)

Pomocou stručného značenia zapíšeme aj HF energiu (325):

EHF =

N∑
i=1

⟨i|h|i⟩+ 1

2

N∑
i,j=1

⟨ij||ij⟩ (376)

Let us compare the Hartree-Fock energy (325) of the ground state with the sum of all
the orbital energies. We see that

EHF ̸=
N∑
i=1

Ei (377)

Thus, the ground-state energy is not the sum of the energies of the individual electrons.
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N∑
i=1

Ei =
N∑
i=1

⟨i|h|i⟩+
N∑

i,j=1

⟨ij||ij⟩ (378)

This is because each interaction enters the above sum of the orbital energies twice; the
factor of 1/2 is missing there.

9.6.2 The Orbital Energies and the Koopmans Theorem

Also in this section you only need to look at what is typeset in the
larger font.

Weare going to examine the physicalmeaning of the orbital energies. However,
we first realise that the Fock operator, (321), has an infinite number of eigenfunctions.
By solving the HF equations, we get the sequences of the lowest N functions and
the corresponding energies that we have studied so far: {ϕi, Ei}Ni=1. However, by
solving the HF equations, we also find the Fock operator, and for this we can then
calculate the rest of the eigensystem: {ϕi, Ei}∞i=N+1; see equations (370). According to
the literature [7], we will agree on the following notation for the indices: The indices
a, b, . . . will be used for i ∈ {1, 2, . . . , N}, thus for the lowestN single-electron states.
These states describe electrons forming the Slater many-particle function; therefore,
we call them occupied states or spinorbitals. The indices r, s, . . . will be used for i > N ,
that is for the unoccupied spinorbitals,o which are usually called empty or (especially
in quantum-chemistry literature) virtual. Really: there are only N electrons in the
system, and therefore, if the system is in the ground state (Φ), then only N of the
lowest spinorbitals can be occupied, each by one electron. Possible excited states of
the system can then be at least roughly described by creating a new determinant in
which one of the occupied spinorbitals ϕa is replaced by one of the empty spinorbitals
ϕr.

It should be noted that statements of the type “electron occupies the level i” (and
has energy Ei and is described by the wave function ϕi) are inaccurate. In fact, the
system is described by some many-particle function. However, such statemens or ex-
pressions correspond to the one-particle picture provided by the HF method, are also
intuitively understandable, and are therefore it is convenient to use them.

S využitím (375) a identity [podľa (374)]

⟨ii||ii⟩ = 0 (379)
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hneď vieme napísať

Ea = ⟨a|h|a⟩+
N∑
b=1
̸=a

⟨ab||ba⟩ (380)

Er = ⟨r|h|r⟩+
N∑
b=1

⟨rb||rb⟩ (381)

V rovnici pre obsadený stav sme teda mohli zo sumovania vypustiť člen, ktorý by bol aj
tak nulový.

Uvažujme teraz tri fyzikálne sústavy:

1. Tú N -elektrónovú, pre ktorú sme počítali základný stav HF metódou. Označme
príslušný determinant ket vektorom aj s indexomN a dolným indexom 0 (prízvukujúcim,
že ide o základný stav). Zapíšme pritom aj príslušne označenú celkovú energiu
sústavy (376).

∣∣NΦ0

〉
, NE0 =

〈
NΦ0

∣∣∣Ĥ∣∣∣ NΦ0

〉
=

N∑
a=1

⟨a|h|a⟩+ 1

2

N∑
a,b=1

⟨ab||ab⟩ (382)

2. (N − 1)-elektrónovú sústavu takú, ktorú získame vytrhnutím elektrónu z (ob-
sadenej) hladiny c základného stavu. Ostatné elektróny pritom necháme v takých
spinorbitáloch, a akých sú. Príslušný determinant a energiu zapíšme obdobne ako
v predošlom bode:

∣∣N−1Φc

〉
, N−1Ec =

〈
N−1Φc

∣∣∣Ĥ∣∣∣ N−1Φc

〉
=

N∑
a=1
̸=c

⟨a|h|a⟩+1

2

N∑
a=1
̸=c

N∑
b=1
̸=c

⟨ab||ab⟩

(383)
Je zrejmé, že vybraním jedného elektrónu zmeníme elektrické pole vo vnútri sústavy
a stav |N−1Φc⟩ nebude základným stavomN−1 elektrónovej sústavy ani v priblížení
HF metódy. HF základný stav by sme dostali tak, že by sme spinorbitály existujú-
cichN−1 elektrónov prispôsobili novému poľu, teda by sme vlastnemuseli spraviť
nový HF výpočet. Stav

∣∣N−1Φc

〉
však často môžeme pokladať aspoň za približný

(N − 1)-elektrónový základný stav.
3. (N+1)-elektrónovú sústavu takú, ktorú získame dodaním elektrónu do (prázdnej)

hladiny r základného stavu. Ostatné elektróny pritom opäť necháme v takých
spinorbitáloch, a akých sú. Príslušný determinant a energiu označíme podobne
ako v predošlých bodoch, ale energiu vypočítame len univerzálnou formulou plat-
nou pre ľubovoľný jednodeterminantový stav:∣∣N+1Φr

〉
, N+1Er =

〈
N+1Φr

∣∣∣Ĥ∣∣∣ N+1Φr
〉
=

occ∑
i

⟨i|h|i⟩+ 1

2

occ∑
i,j

⟨ij||ij⟩

(384)
Rozsah occ znamená, že sa sumuje cez všetky obsadené spinorbitály, nech sú to
ktorékoľvek. Konkretizácia preN +1 elektrónov v hladinách 1, 2, . . . ,N , (. . . ), r
je jednoduchá, ale vyžaduje viac písania.
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The ionisation energy (sometime not very properly called ionisation potential) of an
atom, molecule or ion is the amount of energy needed to release an electron from
the electron shell of given system (the atom, …). Thus, within the one-determinant
approximation (which is used in the HFmethod), we could consider as the approximate
ionisation energy the energy needed to release an electron from the highest occupied
(theN -th) level. However, for the purpose of interpreting the orbital energies, consider
the release of an electron from any of the firstN levels. The ionisation energy defined
in such a more general sense is:

I = N−1Ec − NE0 (385)

Jeho výpočet na základe vyjadrení (382), (383) a (379) nie je ťažký ani zdĺhavý. Využíva
aj identity

⟨ij|kl⟩ = ⟨ji|lk⟩ , ⟨ij||kl⟩ = ⟨ji||lk⟩ (386)

vyplývajúce z definícií (373) a (374). Výsledkom je

I = −Ec (387)

The electron affinity is defined in an analogous way: when we add another electron
to the molecule, the energy of the molecule usually decreases. The more it decreases,
the greater the electron affinity, which is then a positive value.

Thus, its definition in the framework of the HF theory is

A = NE0 − N+1Er (388)

The calculation is again not difficult and its result is

A = −Er (389)

Expression (387) and (389) for the ionisation energy and the electron affinity form
the content of the Koopmans theorem. For reasons that we will not be explaining
here, the ionisation energies according to (387) are a relatively good approximation to
experimental values, while the electron affinities according to (389) are usually quite
wrong. They are even often negative, although they should be positive [7].

An important quantity is also the electronegativity EN of an atom or a molecule.
Its definition according to Mulliken is

EN =
I + A

2
(390)
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9.7 The Spin-Restricted and Unrestricted Variants of the HF Method

In solving the HFE, the unknown spinorbitals are expanded in a chosen basis of known
functions and the coefficients of this expansion are then the unknowns to be determ-
ined. As we have seen, the HFE can be transfomed to form (263) from motivation sec-
tion 9.1. [It is even a simpler form than (E.29) at the HE, since the effective Hamiltonian
in (263) is the same for all spinorbitals – there is no i index at it.] This leads to the idea
or concept of the energy levels Ei and also to the concept that an electron with wave
function ϕi occupies the energy level Ei. It is often the case that these levels are doubly
degenerate, that is

E1 = E2 , E3 = E4 , . . . . . . . . . , EN−1 = EN

and the spinorbitals ϕ1, ϕ2 then differ in their spin component only; similarly the
spinorbitals ϕ3, ϕ4 have identical spatial parts and differ in their spin parts only. And so
on for all other pairs of the spinorbitals (if we properly label them). In otherwords, each
energy level is occupied by two electrons which differ in their spins only. One of them
has its spin “up”, the other “down”. We then say that the system (an atom, molecule or
crystal) exhibits spin degeneracy. In such case, onlyN/2 unknow spatial orbitals are
to be determined. If for this or any other reason, we force the spatial components of
the pairs of the spinorbitals to be identical, we say about the spin-restricted Hartree-
Fock theory (or just restricted HF, in brief). It can well be used especially for systems
with an even number of electrons (but not for all such). The restricted HFE expressed
in a particular non-orthogonal basis (e.g. in the basis of the gaussian functions) are
called the Roothan equations. If we do not require the identical pairs of the spatial
orbitals, we say about the unrestricted HF method or theory.

10 The Homogeneous Electron Gas

For chemical reactions and electrical conductivity, especially the valence electrons
of atoms or molecules, including atoms in extended systems,53 are important. Among
such materials, conductive crystals, i.e. common metals (which do not usually con-
sist of a one monocrystal, but often considering a monocrystal of given material is
sufficient to study many of the material’s properties), have an important place. The
simplest metals are the lighter elements of Group 1 of the Mendeleev Periodic Table:
alkali metals Li, Na, K. Their atoms have only one valence (outer) electron. Thus, their
highest electron shell is similar to the shell of the hydrogen atom, which is 1s1. E.g.

53They can be e.g. crystals, which are condensed substances with periodic repetition of a certain
group of atoms. But they can also be non-periodic solids, which can often be described as amorphous.
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lithium has shells 1s2, 2s1, so its outer shell is only half full. The inner one is com-
pletely filled (i.e. closed) and therefore relatively stable, inert. Alkali metals are also
called simple.

If there are many atoms in the system, the valence electrons are only weakly bound
in them, they easily jump from atom to atom and thus move across the crystal lattice.
It cannot be said that any valence electron would be bound to a particular atom. In
the case of a simple metal, all the valence electrons are thus weakly bound and their
energies are from a certain continuous energy interval (the conduction band). The
conduction electrons in the ground state (ideally at a temperature of T ≈ 0K) occupy
only the lower half of the energy levels of the conduction band.

A metal as a whole is electrically neutral under normal conditions. Due to the
mobility of the conduction electrons, their spatial distribution is such that electrical
neutrality is also ensured locally. A significant deviation from local neutrality under
normal conditions in a metal is not even possible because there is not enough en-
ergy for it. Thus, there is a compensating positive charge in a close neighbourhood of
each electron. Therefore, the Coulomb interaction between electrons is significantly
screened. In the roughest approximation, we can even look at electrons as non-interacting.
Thus, to understand some of the basic properties of a metal, it is sufficient to consider
conduction electrons as a gas of non-interacting (independent) electrons.

10.1 Non-Interacting Electrons

Consider a homogeneous gas of non-interacting 1/2-spin fermions occupying a
macroscopic (sufficiently large) volume. We want to calcuate their total energy. By its
nature, it will certainly be a kinetic energy, because non-interacting particles cannot
have a potential energy. Their mutual independence means that at the beginning, it
will be sufficient to examine properties of one such electron. Obviously, if the space
where those electrons are located is large enough, it doesn’t matter if the space has
a shape of a cuboid, a sphere, a cube, and so on. Across a sufficiently large part of
the considered space, the wave function of such an electron – a free particle – can be
described as a plane wave:

ψk⃗(r⃗) = Ae i k⃗.r⃗ = Ae i (kxx+kyy+kzz) (391)

and the corresponding eigenenergy is

Ek⃗ =
h̄2k2

2m
(392)

A is an unspecified normalisation constant. Since we now assume truly independent
particles, and not those that would interact at least through a mean field in the HF
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method, the total energy of the gas will be the sum of the energies of the individual
particles [cf. (377)]. And the many-particle wave function will be a Slater determinant
build of one-particle functions. However, there is still one condition that otherwise
independent electrons must respect: the Pauli principle. The principle implies for a
given system that the wave function ψk⃗(r⃗) can describe no more than two electrons; if
they are two, they must differ in the values of their spins. In consequence, the energy
level Ek⃗ can be occupied by no more than two electrins differing in their spins. Since
electrons in matter tend to occupy the lowest possible energy levels at low temperat-
ures, the individual levels will be occupied starting from the lowest one up to a certain
higher level. Note that if there were no Pauli principle, all (non-interacting) electrons
would occupy the lowest possible energy level. Thus, although in the Hamiltonian

Ĥ =
N∑
i=1

− h̄2

2m
∇⃗2

i (393)

there is no interaction, the Pauli principle still causes that even the independent fer-
mions at least “know” that their neighbours already occupied some level.

There are no restrictions of the values of the wave vector k⃗. This may lead to tech-
nical difficulties, for example how to calculate summations over all occupied states.
Also, how to normalise a plane wave in the infinite space. This is usually solved by
introducing periodic boundary conditions (PBC).54 Instead of the infinite space, we ima-
gine only a certain section it having the shape of (in the simplest case) a cube with the
side L and we impose the PBC on the wave functions:

ψk⃗(x+ L, y, z) = ψk⃗(x, y, z)

ψk⃗(x, y + L, z) = ψk⃗(x, y, z) ∀ x, y, z ∈ R
ψk⃗(x, y, z + L) = ψk⃗(x, y, z)

(394)

In order for the first of the equations (394) to be satisfied, the following must hold:

exp { i [kx(x+ L) + kyy + kzz]} = exp { i [kxx+ kyy + kzz]}

=⇒ exp ( ikxL) = 1 =⇒ kx = νx
2π

L

νx can be any integer. It apply analogously to the two other boundary conditions. Thus
we get restrictions on the real wave vectors which were otherwise arbitrary up to now.
The values allowed by the defined boundary conditions are

k⃗ν⃗ =
2π

L
(νx, νy, νz) , νx, νy, νz ∈ Z (395)

54– a very common acronym in English texts on electronic structure.
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The form of thewave function, of course, remains as we found it at the beginning: (391).
This time, however, we can also find the normalisation constant A, because we will
require that ∫

(Ω)

∣∣ψk⃗(r⃗)
∣∣2 d3r = 1 (396)

where it is indicated that the integration goes over the volume Ω = L3. Hencem, the
normalised one-electron wave functions are

ψν⃗(r⃗) =
1√
Ω
e i k⃗ν⃗ .r⃗ (397)

The corresponding eigenenergies are calculated using formula (392). We can consider
the numbers νx, νy, νz as quantum numbers.

Of course, the introduction of the PBC is an artifical procedure. We can therefore
ask whether the results we get under its assumption will be correct. We first realize
that we have chosen a very large, periodically replicated volume Ω. The artificial for-
cing that after a huge distance L the wave function must begin to repeat its values
has a negligible effect on local physical quantities somewhere within the considered
volume. In addition, we will see that this hand-inserted artificial length and volume
scale falls out of the results due to a fraction simplification. It is therefore practical in
our considerations, but its specific value is not important. Finally, when we think bet-
ter about PBC later, we will realise that by PBC we have only chosen a certain (regular)
sampling of k-space.

Now let us calculate the total energy of the ground state of the gas in the volume
Ω; gas is also everywhere else, but we calculate the energy per volume. According to
what we said under formula (392), the following applies:

E =
N∑
i=1

Ek⃗i (398)

In this, we assume that N is the number of electrons per volume Ω. The electrons
occupy the states ψν⃗ . We can imagine that we store theN given electrons in quantum
states (labeled by) k⃗ν⃗ gradually, from the lowest state (νx = νy = νz = 0) up to the
higher ones. We place two electrons in each state, differing only in their spins. Since
we build the basic many-particle state of the system in this way, in occupying the states
we cannot omit any of the one-particle states, because the resulting N -electron state
would not have the lowest possible energy. So, the total energy E can be expressed by
summation over wave vectors (395),

E =
∑
k⃗

gk⃗ Ek⃗ =
∞∑

νx=−∞

∞∑
νy=−∞

∞∑
νz=−∞

gk⃗ν⃗ Ek⃗ν⃗ (399)
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where gk⃗ are the occupation numbers: they are equal to 2 for the occupied states and
0 for the unoccupied ones. So, we can formally sum over the all wave vectors. The
mesh of the allowed k-vectors (395) is quite dense for large L; neighboring vectors
differ by 2π/L only. Therefore, it will be correct if we replace the summation in (399)
by integration:

E =
∑
k⃗

gk⃗ Ek⃗ −→
∫

d3k ρk⃗ gk⃗ Ek⃗ (400)

where
ρk⃗ =

1(
2π

L

)3 =
Ω

8π3
(401)

is the density of states in the 3-dimensional k-space and as it can be seen, it is constant,
that is, independent of the position k⃗ in the reciprocal space. Thus, by its physical
dimension and also meaning, ρk⃗ is the number of k-vectors (i.e. also the number opf
states ψk⃗) per unit of volume of the reciprocal space:55

ρk⃗ =
dN
d3k (402)

The total energy E can then be calculated by integrating according to (400), while the
occupation numbers gk⃗ are nonzero only for wave vectors with sizes up to a certain
maximum value, which we denote by kF. As can be seen with consideration of (392),
the integrated function will depend only on the size of the wave vector, not on its
direction. Therefore, it will be advantageous to integrate using spherical coordinates
in reciprocal space:

E =
Ω

8π3

∫
d3k gk⃗ Ek⃗ =

Ω

8π3

∫ kF

0

dk k2
∫ π

0

dϑ sinϑ
∫ 2π

0

dφ 2
h̄2k2

2m
=

=
Ω

8π3
8π

h̄2

2m

∫ kF

0

dk k4 =
Ω

10π2

h̄2

m
k5F (403)

teda
E =

1

10π2

h̄2

m
k5F Ω (404)

We realise that we have integrated over the volume of a sphere with a centre at the
origin and a radius kF. The volume of this sphere in reciprocal space is:

ΩF =
4

3
π k3F

55Where necessary, differently defined densities of states are being used in literature.
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and it is the volume of the reciprocal space that is fully occupied by the given N elec-
trons in the ground state. In this consideration, the already mentioned volume of
(2π/L)3 per two electrons (differing in their spins) is accounted for. Therefore, the
total number of electrons can be expressed as

N = 2

4

3
π k3F(
2π

L

)3 =
1

3π2
k3F Ω

Let us introduce the notation
n =

N

Ω
(405)

It is density of electrons in the usual (they also say direct) space, that is, the basic para-
meter of the system under study. Because we are studying a homogeneous electron
gas, it is a constant. Thus, using the density, we can express the above-introduced
parameter

kF =
(
3π2n

)1/3 (406)

which is called the Fermi wave number and it is therefore the size of those wave vectors
that are related to the highest occupied states. It is noteworthy that the expression (406)
remains valid for interacting electrons with density n too [12] (but we will not prove
it). The energy of the energetically highest electrons of the gas at the temperature of
0 K is called the Fermi energy:

EF =
h̄2k2F
2m

(407)

The average total energyE per one electron of the system can now be expressed using
formulae (404), (405), (406) and (407) as follows:

E

N
=

3

5
EF (408)

After a simple derivation, the result for the total energy expressed using the electron
density becomes

E =
3

10

(
3π2
)2/3 h̄2

m
n5/3 Ω (409)

It is kinetic energy, because we obtained it for the gas of non-interacting electrons,
which cannot have potential energy. It is the sum of the kinetic energies of the indi-
vidual electrons.
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11 TheThomas-Fermi Model

Thus, formula (409) gives the energy of the non-interacting electron gas in the
volume Ω. The model of Thomas and Fermi (TF) extrapolates the validity of this rela-
tion to relatively general situations with inhomogeneous electron densities in systems,
such as atoms and possibly molecules, ions and extended systems. According to this
model, we imagine the volume of the system divided into small volumes ∆Ω. In each
of these volume elements, we assume the validity of formula (409), taking the average
density in this element for the density and the value ∆Ω for its volume. It is certainly
no longer a non-interacting gas, but Thomas and Fermi nevertheless make the bold
assumption described. The total kinetic energy is thus obtained by summation over all
volume elements ∆Ω, i.e. by integrating over the entire volume of the system. In the
atomic units (h̄ = m = 1) this energy gets

TTF[n] = CF

∫
n5/3(r⃗) d3r , CF =

3

10

(
3π2
)2/3 ≈ 2.871 (410)

TTF is called the Thomas-Fermi functional for kinetic energy. Thus, kinetic energy of
the system of electrons is calculated from the density only in the model. In order to
be able to calculate the energy of the ground state of the system, it is necessary to add
other components to the energy. In the basic TF model [11, 12], the following is added:
• The elektrostatic interaction of the charge density −en(r⃗) with the external poten-
tial uext(r⃗), which in the TF theory usually is the potential coming from the atomic
nucleus; however, if we study a more complex system, it is the total electrostatic
potential from the nuclei plus from other external sources:

uext(r⃗) =
∑
I

ZI

|r⃗ − R⃗I |
+ uother(r⃗) (411)

It is an external potential defined exactly as we used it in the HF theory [cf. (259)],
but there we multiplied it by the charge of electron, thus getting the potential energy
operator vext(r⃗) from the potential. Thus, the following holds in the SI system:

vext(r⃗) ≡ −euext(r⃗) (412)

In this section, however, we are otherwise using the Hartree atomic units in which
vext(r⃗) ≡ −uext(r⃗). In addition, in TF theory we do not work with operators, but
only with classical concepts, so we do not even need the operator symbol v̂ext here.

• The classical Hartree energy describing the electrostatic interaction of electrons with
each other in terms of their total density; there is such a contribution even in the
HF theory, although it is primarily expressed there through the orbitals; In the HF
theory, the Hartree energy is in the Coulomb electrostatic integral.
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In this way we obtain the energy of the system as a functional of the density:

ETF[n] = CF

∫
n5/3(r⃗) d3r −

∫
uext(r⃗)n(r⃗) d3r +

1

2

∫
n(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′ ≡

≡ TTF + Eext + EHartree

(413)

This is the functional of the Thomas-Fermi theory of atoms (and it could be evalu-
ated for molecules and crystals too). Its first term (kinetic energy) is non-classical,
the second and third ones are the classical electrostatic interactions of a continuous
charge distribution with an external field and with itself, as we know them from the
basic physics course.

If the TF model is correct, then by finding the minimum of the functional ETF we
determine the energy of the ground state of the considered atom or other system. Thus,
the task will be to find the minimising density n(r⃗). That one must, however, integrate
to the required number of electrons of the atom under study:∫

n(r⃗) d3r = N (414)

We impose this using a Lagrange multiplier as an equality constraint. Therefore, the
augmented functional

ΩTF[n] = ETF[n]− µ

[∫
n(r⃗) d3r −N

]
(415)

is to be minimised. µ is the Lagrange multiplier. To find the minimum of this func-
tional, we must first calculate its variation and then set it equal to zero. We find the
variation of the functional similarly as when we talked about the Hartree-Fock equa-
tions: we will calculate how the functional changes when the density n(r⃗) changes by
a small amount δn(r⃗):

δΩTF[n] = ΩTF[n+ δn]− ΩTF[n] (416)

In order not to have to write too long formulae, we will write the whole functional as
a sum of several terms:

ΩTF = TTF + Eext + EHartree − µ

[∫
n(r⃗) d3r −N

]
(417)

First, calculate
δTTF[n] = TTF[n+ δn]− TTF[n]
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TTF[n+ δn] = CF

∫
(n+ δn)5/3 d3r = CF

∫
n5/3

(
1 +

δn

n

)5/3

d3r

The density variations in the search for the functional minimum are very small, such
that
|δn|/n≪ 1. Then we can apply Taylor’s expansion

(1 + x)p ≈ 1 + px , |x| ≪ 1 (418)

to a part of the subintegral expression and obtain

TTF[n+ δn] = CF

∫ (
n5/3 +

5

3
n2/3δn

)
d3r

Therefore

δTTF[n] =
5

3
CF

∫
n2/3 δn d3r (419)

Let us now calculate

EHartree[n+ δn] =
1

2

∫ [
n(r⃗) + δn(r⃗)

][
n(r⃗ ′) + δn(r⃗ ′)

]
|r⃗ − r⃗ ′|

d3r d3r′ =

= EHartree[n] +
1

2

∫
n(r⃗)δn(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′ + 1

2

∫
δn(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′+

+
1

2

∫
δn(r⃗)δn(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′

The last term – the one with the product of variations – is infinitely smaller than the
terms linear in the variation δn. The two linear terms of the last formula are identical
because the notations of the integration variables do not matter. So we get

δEHartree[n] =

∫
n(r⃗)δn(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′ (420)

Variations of the remaining two contributions to the functional ΩTF can be calculated
analogously (and very simply). Bu summing up we arrive at expression

δΩTF[n] =
5

3
CF

∫
n2/3 δn d3r −

∫
uext(r⃗)δn(r⃗) d3r +

∫
n(r⃗ ′)δn(r⃗)

|r⃗ − r⃗ ′|
d3r d3r′

− µ

∫
δn(r⃗) d3r

(421)
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and if we put it into one integral and take out of the brackets what can be taken, we
obtain the following expression:

δΩTF[n] =

∫
d3r
[
5

3
CF n

2/3(r⃗)− uext(r⃗) +

∫
d3r′ n(r⃗ ′)

|r⃗ − r⃗ ′|
− µ

]
δn(r⃗)+

+ terms proportional to higher powers in δn (422)

It follows from the condition of the minimum of the functional that we must require

δΩTF = 0 (423)

for any small variations of the electron density. For δΩTF to be zero under these con-
ditions, the following must apply:

5

3
CF n

2/3(r⃗)− uext(r⃗) +

∫
n(r⃗ ′)

|r⃗ − r⃗ ′|
d3r′ = µ (424)

By solving this integral equation for an unknown density (such that it is non-negative
and integrates to N ), we can finally evaluate also the ground state energy of the TF
model. The Lagrange multiplier µ has a meaning of the Fermi energy according to the
TF model (which we will not justify).

Thus, the TF theory (1927) provides an incredibly simple description of the complex
many-particle problem. Instead of a wave function which has 3N spatial variables, the
density with only 3 variables is sufficient. The tax for this simplicity is the inaccuracy
of the TF model, even after improvements, which have been many in history (eg the
inclusion of exchange energy). For example, this method is unable even qualitatively
correctly describe molecular bonds (nuclei of a molecule would not be kept together
according to the TF model). However, the TF theory is an excellent motivation for a
rigorous approach to the description of the ground state using the density. This rigor-
ous approach – density functional theory – began to develop in 1964, when Hohenberg
and Kohn published their innovative work.

12 Density Functional Theory

Wewill be using abbreviationDFT according to the English termDensity-Functional
Theory. The fundamentals of this theory were laid by Pierre Hohenberg a Walter Kohn
in their work [13]. We will introduce the two basic theorems of DFT according to this
original work.
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12.1 Electron Density

Since DFT theorems work with the concept of electron density, it will be useful
to first clarify how this density can be determined from a wave function. Let a wave
function of an N -electron system is Ψ(r⃗1, σ1, . . . , r⃗N , σN). At this stage of our the
exposition, it may not even be a wave function of the ground state, it may even depend
on time, although we do not explicitly indicate it. However, we do require the standard
normalisation:∑

σ1

· · ·
∑
σN

∫
d3r1· · ·

∫
d3rN |Ψ(r⃗1, σ1, . . . , r⃗N , σN)|2 = 1 (425)

We interpret the expression |Ψ(r⃗1, σ1, . . . , r⃗N , σN)|2 d3r1 . . . d3rN as the probability
to find:
electron 1 in a state with spin σ1 within the volume d3r1 in the neighbourhood of point
r⃗1
and at the same time (in the sense of the logic)
electron 2 in a state with spin σ2 within the volume d3r2 in the neighbourhood of point
r⃗2
and at the same time
………
electron N a state with spin σN within the volume d3rN .
In these considerations, we must not forget that the electrons are in fact indistinguish-
able and the wave function is antisymmetric. However, the wave function is con-
ventionally being normalised according to (425). According to this normalisation, the
unity is obtained by summing up the probabilities of the occurrence of theN electrons
here and there in the way as if they were distinguishable. Other normalisation would
bring substantial complications.

Calculation of n(r⃗) Using the Probability Density If we omit summation and in-
tegration over one of the coordinates, e.g. over the first one, we obtain the probability
density of finding any electron in the spin state σ at the point r⃗:

Pσ(r⃗) =
∑
σ2

· · ·
∑
σN

∫
d3r2· · ·

∫
d3rN |Ψ(r⃗, σ, r⃗2, σ2, . . . , r⃗N , σN)|2 (426)

We highlighted any, because due to the indistinguishability of electrons and the anti-
symmetry of the wave function [Ψ(j, i; t) = −Ψ(i, j; t), see the end of section 8.5], it
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does not matter which orbital-spin coordinate (r⃗i, σi) we would omit from the sum-
mation and integration; from a given wave function Ψ, we would always get the same
function Pσ(r⃗). Of course, thanks to normalisation (425) it holds∑

σ

∫
d3r Pσ(r⃗) = 1 (427)

that is, if we accomplish the search over the entire orbital-spin space, we find the
searched electron with the 100% probability (although we can not say if it is the first
one or the second etc). If we are not interested in what spin an electron has, then
we get the probability density of finding some electron (with any spin) at point r⃗ by
summing up over the both spins:

P(r⃗) =
∑
σ

Pσ(r⃗) (428)

and it is clear that ∫
P(r⃗) d3r = 1 (429)

It is now clear that the electron density n(r⃗) is proportional to the function P(r⃗):

n(r⃗) = N P(r⃗) (430)

The proportionality constant must be the total number of electrons N , because the
integral of the electron density over the whole space must give the total number of the
electrons: ∫

n(r⃗) d3r = N (431)

Recall that we have already explicitly encountered the electron density n of the N -
electron system, or (which is an equivalent quantity), the charge density ρ generated
by such a system: For the first time, it was in our study of the HF method [eq. (300)].
For the second time, we encountered density when studying the homogeneous elec-
tron gas, for which from the very definition of the problem, naturally, the density did
not depend on the position [eq. (405)]. Then we worked with it, already spatially de-
pendent, in the theory of Thomas and Fermi; see for instance eq. (413). Now we have
finally related the electron density to the wave function of the N -electron system. Based
on formulae (430), (428) and (426) we now write this relation explicitly:

n(r⃗) = N
∑
σ

∑
σ2

· · ·
∑
σN

∫
d3r2· · ·

∫
d3rN |Ψ(r⃗, σ, r⃗2, σ2, . . . , r⃗N , σN)|2 (432)

In the following sections, we will need to be able to express the potential energy of an
electron in a given external field using the electron density generated by that electron.
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Calculation of n(r⃗) Using the Operator of the Density of Electrons.
This part -- it is written in a smaller font and narrower text
-- does not need to be known, but it is recommended to at least
look at it for interest.

Hustota elektrónov je fyzikálna veličina a preto sa dá definovať aj jej operátor; samotnú
hustotu potom bude možné počítať ako kvantovomechanickú strednú hodnotu tohoto
operátora v danom ľubovoľnom stave Ψ:

n(r⃗) = ⟨Ψ|n̂(r⃗)|Ψ⟩ (433)

Aké je vyjadrenie operátora hustoty elektrónov? Treba ho skonštruovať v súlade s princí-
pom korešpondencie, teda na základe 2. postulátu kvantovej mechaniky preberanom
v odseku 1.2.6. Vychádzať preto treba z formuly pre hustotu klasických elektrónov; tá sa
potom dá prehlásiť za operátor. Klasické elektróny sú bodové častice, a preto v miestach,
kde je niektorý z elektrónov, je hustota nekonečná, a v ostatných miestach priestoru je
nulová. Teda

n̂(r⃗) =

N∑
i=1

δ(r⃗ − ˆ⃗ri) (434)

kde δ(r⃗) je 3-rozmerná Diracova delta funkcia spĺňajúca podmienky [2]

δ(r⃗) = δ(−r⃗) ,
∫
δ(r⃗) d3r = 1 (435)

a aj všeobecnejšiu podmienku∫
f(r⃗) δ(r⃗ − r⃗0) d3r = f(r⃗0) (436)

pre ľubovoľnú „slušne“ sa správajúcu funkciu f(r⃗) a pre ľubovoľný bod r⃗0 v priestore.
Všimnime si, že pre vyššie zavedenú klasickú hustotu (a zároveň QM operátor) n̂(r⃗) platí∫

n̂(r⃗) d3r = N (437)

čo je v súlade s tým, čo od správne zavedenej hustoty očakávame. Teraz môžeme vyjadriť
samotnú QM strednú hodnotu hustoty podľa (433):

n(r⃗) = ⟨Ψ|
N∑
i=1

δ(r⃗ − ˆ⃗ri) |Ψ⟩ =

=

N∑
i=1

∑
σ1

· · ·
∑
σN

∫
d3r1 . . . d3rN

Ψ∗(r⃗1, σ1, . . . , r⃗N , σN ) δ(r⃗ − r⃗i) Ψ(r⃗1, σ1, . . . , r⃗N , σN ) =

=

N∑
i=1

∑
σ1

· · ·
∑
σN

∫  N∏
j=1
j ̸=i

d3rj


Ψ∗(r⃗1, σ1, . . . , r⃗i → r⃗, σi, . . . , r⃗N , σN ) Ψ(r⃗1, σ1, . . . , r⃗i → r⃗, σi, . . . , r⃗N , σN )
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Vďaka antisymetrii vlnovej funkcie je jedno, aké je i – pre každé i dostaneme taký istý
príspevok. Preto (ak použijeme i = 1)

n(r⃗) = N
∑
σ1

· · ·
∑
σN

∫  N∏
j=2

d3rj

 |Ψ(r⃗, σ1, . . . , r⃗N , σN )|2 (438)

čo je vyjadrenie identické s výsledkom (432), ktorý sme dostali výpočtom pomocou hus-
toty pravdepodobnosti. Výpočet pomocou operátora n̂(r⃗) možno považovať za elegant-
nejší.

12.2 Definition of the Problem under Study

Consider a system of N electrons. Suppose their motion is influenced by the ex-
ternal electrostatic potential v̂ext(r⃗) and by the mutual Coulomb interactions of the
electrons. The external potential includes both the Coulomb field of the atomic nuclei
and possible other electrostatic field, exactly as we assumed in the theory of Hartree
and Fock. We do not consider spin interactions or other relativistic effects, so there are
no spin-dependent terms in the Hamiltonian. Therefore, the total Hamiltonian will be

Ĥ = T̂ + V̂ext + Ŵ (439)

where

T̂ =
N∑
i=1

(
− h̄2

2m

)
∇⃗2

i (440)

is the kinetic-energy operator of the whole system,

V̂ext =
N∑
i=1

v̂ext(r⃗i) (441)

is the potential-energy operator of the whole system and [see possibly also (411) and
(412)]

v̂ext(r⃗) = −
∑
I

1

4πε0

ZIe
2

|r⃗ − R⃗I |
+ v̂other(r⃗) (442)

Thus, V̂ext is the sumof the potential energies of the individual electrons. Every electron
moves in the same external potential56 ûext(r⃗) = v̂ext(r⃗)/(−e). This must be from the

56In a strict sense, uext(r⃗) is called to be a potential (usually coming from the nuclei, i.e. positive),
while vext(r⃗) = −euext(r⃗) is the potential energy of a point particle with charge (−e) in the field
uext(r⃗). For the sake of brevity, we will also sometimes call v̂ext(r⃗) = vext(r⃗) potential. We use this
quantity here in the sense of an operator; in QM we cannot consider an electron as a classical point
particle. The actual potential energy of the electrons in the external field must be calculated from the
wave function according to (445) or from the density according to (446).
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very definition of the problem, because all the N electrons belong to the same system
(e.g. a molecule or a crystal) and every electron thus feels a field of the same nuclei
plus a possible additional (“other”) field. v̂ext and ûext are the same functions as vext and
uext in the theory ofThomas and Fermi, but here we also add hats to them to emphasize
that DFT is, unlike the TF model, a fully quantum theory. We were writing hat also in
the HF theory [eq. (259), (278)]. Finally

Ŵ =
1

2

N∑
i,j=1

′ e
2

4πε0

1

|r⃗i − r⃗j|
(443)

is the operator of the electron-electron interaction energy.
Themain task in theDFT is to determine the ground-state electron density and energy.

The fundamental spatial variable is the density n(r⃗). Wave functions (or rather a set
of single-particle orbitals) have, as we shall see, only an auxiliary role in DFT.

12.3 Potential Energy of Electrons in the External Field

The total energy of the system in any normalized state Ψ can be found as the
quantum-mechanical expectation value of the energy operator:

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|T̂ |Ψ⟩+ ⟨Ψ|V̂ext|Ψ⟩+ ⟨Ψ|Ŵ |Ψ⟩ (444)

Let us now consider the contribution from the external field to show that it can be
easily expressed in terms of density n(r⃗).

Eext = ⟨Ψ|V̂ext|Ψ⟩ = (445)

=
∑
σ1

· · ·
∑
σN

∫
d3r1 . . . d3rN

Ψ∗(r⃗1, σ1, . . . , r⃗N , σN)

[
N∑
i=1

v̂ext(r⃗i)

]
Ψ(r⃗1, σ1, . . . , r⃗N , σN) =

=
N∑
i=1

∑
σ1

· · ·
∑
σN

∫
d3r1 . . . d3rN |Ψ(r⃗1, σ1, . . . , r⃗N , σN)|2 v̂ext(r⃗i)

Due to the antisymmetry of the wave function, each of the N terms of this sum is the
same. (No matter what i we take, the contribution for each i is the same.) Therefore,
taking into account (432) we get

Eext =

∫
n(r⃗)v̂ext(r⃗)d3r =

∫
(−e)n(r⃗)︸ ︷︷ ︸
ρ(r⃗)

ûext(r⃗)d3r (446)
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Thus, even in quantum mechanics, the quantum mechanical expectation value of the po-
tential energy of electrons in a given external field is calculated by the formula known
from classical physics: as if the electrons were forming a continuous charge distribu-
tion with the charge density ρ(r⃗) and this charge distribution in the potential ûext(r⃗)
has the electrostatic energy Eext. This is exactly the way how we (in the atomic units)
calculated this energy in the model of Thomas and Fermi, see the second term in (413).

12.4 Density as Basic Variable

While in sections 12.1 and 12.3 Ψ could have been any normalised wave function
of theN - electrons system (even a time-dependent one), here byΨwe will understand
the ground-state wave function. We will assume the ground state of the system under
study to be non-degenerate. The ground-state wave function is then unambiguously
determined the the number N and by the external potential v̂ext(r⃗). To understand
this, realise that if we know the number of electrons of a system and the course of
the external potential, then we can unambiguously determine its Hamiltonian (439);
whatever the system is, the contributions T̂ and Ŵ always have the forms (440) and
(443) (and for different systems, these formulae can only differ in different numbersN ).
And if we know the Hamiltonian, then at least in principle we can solve the stationary
SchE and in this way to determine the wave function and energy of the ground state.
Note also that if we have two different systems (for example two different molecules),
but with the same numbers of electrons, then their Hamiltonians differ only in the
external potentials. So once again – the ground state wave function Ψ is uniquely
determined by the number ofN and by the external potential v̂ext(r⃗). We do not write
the hats on vext further for brevity.

The 1st theorem of Hohenberg and Kohn: reports that a less obvious statement – in
reverse direction – also applies [13]:

vext is a unique functional of the ground-state density n(r⃗), apart from a
trivial additive constant.

Alebo, trochu inými slovami [11], the external potential vext(r⃗) is determined, within
a trivial additive constant, by the electron density n(r⃗).

A comment to elucidate the constant: We know that if we add any constant to potential
energy or potential, nothing changes in physics of the system: the force on a particle is
F⃗ = −∇⃗vext and the additive constant has no influence on the result of the derivative.
Also in QM, only energy differences are important.
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We also notice that if we know the electron density, the number of electrons in the
system is clearly determined by it:

N =

∫
n(r⃗) d3r (447)

A consequence: Since, according to the 1st HK theorem, the density of the ground state
uniquely determines the potential, and thus also the Hamiltonian, the wave function
of the ground state and of all other states are then uniquely determined (apart from
trivial multiplication constants). Therefore, all properties of the system all fully determ-
ined if just the ground-state density is given [12].
Proof of the 1st HK theorem: it proceeds by reductio ad absurdum57 and is strikingly
simple:
Máme danú hustotu n(r⃗) istého základného stavu. Predpokladajme, že by 1. HK teor-
éma neplatila, teda že by existovali (aspoň) dva netriviálne odlišné vonkajšie poten-
ciály, vext(r⃗) a v′ext(r⃗), také, že by oba dávali (vyriešením SchR) tú istú hustotu základ-
ného stavu n(r⃗). Tie dva rôzne potenciály by nutne viedli ku dvom rôznym hamilton-
iánom Ĥ a Ĥ ′ a tým aj ku rôznym vlnovým funkciámΨ aΨ′ základných stavov. Pred-
pokladajme normovanosť týchto vlnových funkcií. Energie základných stavov Ψ a Ψ′

si označme E a E ′. Potom platí

E = ⟨Ψ|Ĥ|Ψ⟩ , E ′ = ⟨Ψ′|Ĥ ′|Ψ′⟩

Podľa všeobecne platného variačného princípu QM (167) platí58

E ′ = ⟨Ψ′|Ĥ ′|Ψ′⟩ < ⟨Ψ|Ĥ ′|Ψ⟩

Použili sme ostrú nerovnosť, lebo podľa predpokladu uvažujeme sústavu s nedegener-
ovaným základným stavom. Ak tedaΨ′ dávaminimum, takΨmusí dať vyššiu energiu.
Ďalej to upravujme:

E ′ < ⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ = E + ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩

Druhý člen na pravej strane sa dá upravovať s prihliadnutím ku (439) (445) a (446)
takto:

⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ = ⟨Ψ|V̂ ′
ext − V̂ext|Ψ⟩ =

∫
n(r⃗) [v′ext(r⃗)− vext(r⃗)] d3r

57clasically [reˈduktió ad abˈsurdum], in later times [reˈdukcio ad abˈsurdum] (from Latin)
58Ten princíp samozrejme platí aj pre mnohočasticové sústavy. My sme si ho zapisovali len pomocou

jednočasticových vlnových funkcií, lebo vtedy sme poznali len také, ale všimnime si, že na jeho platnosti
a dôkaze sa nič nezmení, keď namiesto f(r⃗) a d3r budeme uvažovať mnohočasticové funkcie, dokonca
aj so spinovými premennými.
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Hustota n(r⃗) je totiž podľa predpokladu len jedna pre oba potenciály. Takže dostávame

E ′ < E +

∫
n(r⃗) [v′ext(r⃗)− vext(r⃗)] d3r (448)

Obdobný výpočet môžeme spraviť tak, že navzájom zameníme čiarkované a neči-
arkované veličiny:

E < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ = E ′ + ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ ⇒

E < E ′ +

∫
n(r⃗) [vext(r⃗)− v′ext(r⃗)] d3r (449)

Sčítaním nerovností (448) a (449) dostávame

E ′ + E < E + E ′

which is an obvious non-sense. Predpoklad, že by (v prípade sústav s nedegener-
ovaným základným stavom) pre danú hustotu n(r⃗) existoval viac ako jeden vonkajší
potenciál vext, teda nie je správny, lebo vedie ku nezmyselnému dôsledku.59

12.5 The Variational Principle

The 2nd theorem of Hohenberg and Kohn:

There exists a universal [i.e. independent of vext(r⃗)] functional of the dens-
ity, FHK[n] such that the expression

Ev[n] ≡
∫
vext(r⃗)n(r⃗) d3r + FHK[n] (450)

has as its minimum value the exact ground-state energy of the N -electron
system for any given potential vext(r⃗). The density that minimises the func-
tional Ev[n] is the exact ground-state density [13].

Mathematically expressed, the variational principle of the 2nd Hohenberg and Kohn
theorems is that

E0 ≤ Ev[n] (451)
59Nešlo teda o typický dôkaz sporom, lebo v takom by sa prišlo do sporu s nejakým vopred vyslov-

eným predpokladom. My sme len prišli ku nezmyslu. Ale aj dôkazy sporom sa radia medzi logicko-
matematické postupy s názvom reductio ad absurdum.
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for any trial density that satisfies the conditions

n(r⃗) ≥ 0 ,

∫
n(r⃗) d3r = N (452)

Proof of the 2nd HK theorem:
We already know how to express the energy of a given system in any normalised N -
electron state Ψ – we can do it using formula (444). For the purpose of our proof, we
would now need to rewrite this formula so that the energy expressed by it depends on
the density of the electrons, and not on the wave function. Is it possible? Yes; realise
that the 1st HK theorem has the consequence, mentioned below it, that the ground-
state wave function itself is fully determined by the ground state (GS) density, and is
therefore also a functional of the density. And since everything can be calculated from
the wave function, e.g. the kinetic energy (in the sense of the QM expectation value),
the electron-electron interaction energy, also the total energy, we can also consider
these as density functionals. Therefore, we can really write for the energy (444) cor-
responding to state Ψ and also for the individual components of the energy that they
can be expressed as density functionals (and in this expression there will no longer be
a dependence on wave functions):

Ev[n] = T [n] +W [n] +

∫
n(r⃗)vext(r⃗)d3r (453)

where
T [n] = ⟨Ψ|T̂ |Ψ⟩ , W [n] = ⟨Ψ|Ŵ |Ψ⟩ (454)

We now define the functional

FHK[n] ≡ T [n] +W [n] (455)

The total energy can then be expressed by the formula of the form (450). By this we
have completed the part of the proof of the 2nd HK theorem, i.e. we have proved that
there exists some universal functionalFHK[n], using that we can also express the energy
of the GS.

Above, we added the index v to the total energy, highlighting that it depends on the
external potential vext(r), which, as we already know, is also a functional of the density,
so it would not be necessary to talk about the dependence on vext(r). However, for
formal reasons, if we need and want to, we can also understand Ev[n] as a value that
depends on vext(r) and on n(r⃗) as on two independent functions. For a given chosen
potential vext(r⃗), we can then test different (trial) densities n(r⃗) and find out which of
them gives the lowest value of the functional Ev[n]. If we took a density other than
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the GS density, then this density would correspond to a wave function other than the
GS function. We remind that with these considered variations of the density, we keep
the external potential vext(r) in formula (453) fixed in its originally given form. Based
on the variational principle of QM taken over in section 6.1, it must then be true that if
the density and thus the wave function deviates from the wave function of the ground
state, the value ofEv[n]must necessarily increase. By this we have completed the proof
of the 2nd HK theorem. We also note that although the variational principle taken over
in section 6.1 has been written for the case of a single particle, its generalization to N
particles would be trivial.

An alternative formulation of the potential-and-density relation also exists. This
formulation also eliminates the problem of possible degenerate ground state, the solu-
tion of which we have omitted in our exposition. The authors of this formulation are
Levy and Lieb [11, 12]. In their formulation, they provide an alternative proof of the
2nd theorem of Hohenberg and Kohn.

We now see that the heuristic approach of Thomas and Fermi, in which the min-
imum of the functional (415) is sought with respect to density, has been given a rigor-
ous basis by the theorems of Hohenberg and Kohn (as well as by the works of Levy and
Lieb). However, the problem of the TF model is in the qualitatively inaccurate expres-
sion of the functionals TTF[n] andW [n]. For example,W [n] in the TF theory includes
only the classical part of the interaction energy; the exchange energy is completely
missing, as well as the correlation energy. Even the work of HK [13] itself, although
it proves that there exists some universal functional, it does not find its exact explicit
form, only approximations for certain limiting cases. Even later, this functional could
never be found exactly. However, a suitable method was proposed in 1965 by Kohn
and Sham, which we will talk about at least a little in the next section.

12.6 Kohn-Sham Ansatz

The difficult-to-solve system of N interacting electrons was replaced by Kohn and
Sham (KS) in their approach to the DFT by an auxiliary system of N independent,
i.e. non-interacting electrons [14]. This auxiliary system must be such as to provide
the same electron density of the ground state as the original problem of interacting
particles. This is the KS ansatz (an “educated guess” how to solve a given problem
[Wikipedia]). In English-written literature, the term Kohn-Sham mapping is some-
times used to indicate that Kohn and Sham mapped the system ofN interacting
electrons to a system ofN non-interacting ones, but so as the electron density
to be the same. Due to the assumption of the independent electrons, their kinetic
energy is easily determined. Of course, independent electrons would only have the
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kinetic energy plus the energy Eext of the interaction with a given external potential.
This energy would be completely wrong and we want the correct ground state en-
ergy. Therefore, we must add the missing contributions EHartree[n] and Exc[n] to the
following expression for the total energy:

EKS[n] = Ts[n] +

∫
n(r⃗)vext(r⃗)d3r + EHartree[n] + Exc[n] (456)

where Ts is the mentioned kinetic energy of the neinteracting electrons, EHartree is the
Hartree energy and Exc is the exchange-correlation energy (i.e. the exchange one
and the correlation one added together). For understanding, (456) must be compared
with (453). It can be seen that the Hartree energy is a (quantitatively significant) part
of the total interaction energyW . But the totalW in addition contains the QM contri-
butions: the exchange-correlation energy, so we had to add these to (456) in the form
of the Exc term. It is obvious that the exchange-correlation energy defined in this way
also contains a part of the kinetic energy, because we have included into Ts only such
a kinetic energy that corresponds to the independent electrons.

The system of independent electrons can usually be described by a one-determinant
wave function, as it is in the Hartree-Fock theory. So in DFT we introduce auxiliary
(spin) orbitals, which the Slater determinant is composed of (but it doesn’t really need
to be built and evaluated). These orbitals, when calculated correctly, must generate
the correct ground state density. The kinetic energy Ts is then determined from these
auxiliary orbitals as in the HF method, i.e. it is (in principle) the exact kinetic energy
of the non-interacting electrons. Thus, not as in theThomas-Fermi model, in which the
kinetic energy is determined very inaccurately directly from the density according to
(410). Realise that the TF kinetic energy is really only correct for homogeneous gas
of non-interacting electrons (but in the TF model it is also used for inhomogeneous
one, which then has its undesirable consequences.) In DFT, we have transformed the
problem to the problem of non-interacting particles, but they generally form an in-
homogeneous gas and therefore it is correct to calculate their kinetic energy from the
orbitals. Thus, in practical use of DFT, we do not completely get rid of wave functions;
the one-particle ones are needed.

A special feature of DFT is the mentioned exchange-correlation energy, for which
various approximations are being proposed. The basicmodel is called the local-density
approximation [14] (LDA):60

ELDA
xc [n] =

∫
n(r⃗) ϵxc(n(r⃗)) d3r (457)

60a well-know abbreviation in electronic structure theory
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where ϵxc(n) is the exchange-correlation energy of homogeneous electron gas of dens-
ity n per one electron. The dependence of ϵxc on n for a homogeneous electron gas can
be calculated with sufficient accuracy by specialised methods. Using formula (457),
we can then approximaltely determine the exchange-correlation energy Exc[n], which
makes it possible to practically use the density-functional theory. The LDA model
appears to be a rough approximation because in atoms, molecules and crystals, dens-
ity exhibits strong inhomogeneities. It is a similar difficulty as in the Thomas-Fermi
model. Rather surprisingly, however, DFT with the LDA functional is a very good ap-
proximation, qualitatively better than the TF model. During the development of DFT,
of course, various improvements were developed for the Exc[n] function, e.g. gradient
corrections, under which ϵxc depends not only on the density at a given location, but
also on its gradient [see, for instance, the contribution of authors J.P. Perdew, S. Kurth
in [15], formula (1.230)]. In this respect, e.g. the GGA (Generalised Gradient Approx-
imation) model, and in particular its implementation PBE (acronym according to the
authors’ names) is successful [15, 12]. However, no functional proposed so far is ac-
curate (and it can hardly be expected that such a one, being also practically usable,
will ever be found). Nevertheless, DFT in conjunction with the KS mapping (of the
interacting to the non-interacting problem) is the most widely used ab initiomethod.61
This is because it is a good compromise between accuracy and computational demands.
Walter Kohn is the winner of the 1998 Nobel Prize in Chemistry for his key work on
DFT.

Finally, we only verbally mention that the KS ansatz, after accomplishing variation
(minimum search) similar to that in the TF method, leads to the Kohn-Sham equa-
tions for the above-mentioned auxiliary one-particle orbitals and the corresponding
one-particle eigenenergies [14, 12, 11]. The KS equations by their form resemble the
HF equations a little.

61The term ab initio is, as already mentioned, used primarily for methods of quantum chemistry
which employ only basic physical laws and mathematical-numerical procedures to solve the relevant
equations. In a broader sense, ab initio methods include DFT methods, although quantum chemists do
not usually call them that, because the designs of the Exc[n] functionals tend to be constructed in ways
that do not guarantee uniform quality of results for different systems. E.g. for some molecules we get
highly accurate results with DFT, for many others (even solids) also very good, but in some cases DFT
(with a specific functional, e.g. LDA) fails. This can often be helped by designing another functional,
but this can be worse for some other structures, or for determining some other parameters of a given
structure.
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A Expansion of awave function in a complete set of func-
tions

A.1 Functions of one variable. Expectation values of quantities

Assume we have a complete set of functions

{un(x)} (A.1)

We omit writing the range of the values of the index n. It usually is infinite with
the indexing starting either from 0 or from 1 or from −∞, possibly from some other
values. This does not matter now and a concrete choice depends on a concrete task
to be solved. The essential property is that the functions form a complete set which
means that any function can be written as a linear combination of the functions un(x):

ψ(x) =
∑
n

cnun(x) (A.2)

In addition to the completeness, let us assume also orthogonality of of the basis func-
tions un(x): ∫ ∞

−∞
u∗m(x)un(x) dx = 0 akm ̸= n (A.3)

Such functions are definitely linearly independent: no one of them can be expressed
as a linear combination of the remaining functions.62 In addition, there are practical

62In order to demonstrate the above mentioned linear independency, let us try, for examples, to ex-
press the function uk(x) as s linear combination of the basis functions un(x):

uk(x) =
∑
n

cnun(x) (A.4)

Multiple the equation from the left by the function u∗m(x) (with m being any of the possible values of
the index) and integrate. We obtain∫ ∞

−∞
u∗m(x)uk(x) dx =

∑
n

cn

∫ ∞

−∞
u∗m(x)un(x) dx

i.e., employing the orthonormality (A.6),

δmk =
∑
n

cnδmn = cm, ∀m

which in other sybols reads cn = δnk . Thus, we obtain the only non-vanishing term in the expan-
sion (A.4):

uk(x) =
∑
n

δnkun(x) = uk(x)
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(and in quantum mechanics also physical) reasons to assume∫ ∞

−∞
|un(x)| dx = 1 pre každé n (A.5)

that is the normalisation to unity. The last two properties (orthogonality plus normal-
isation) are called orthonormality in a single word. We express it∫ ∞

−∞
u∗m(x)un(x) dx = δmn (A.6)

The above formulae and procedure can also be understood purely as some mathemat-
ical formalism. Since we want them to use for quantum physics, let us suppose that
{un(x)} is a set of eigenfunctions fo some hermitian operator and that ψ(x) is a wave
function.63 It has to be normalised to unity:∫ ∞

−∞
|ψ(x)|2 dx = 1 (A.7)

We now subtitute expansion (A.2) into this condition. Using orthonormality (A.6), we
arrive at ∑

n

|cn|2 = 1 (A.8)

This result suggests that the number |cn|2 = Pn should be interpreted as a probability
that the particle is in a state described by the wave function un(x). As the probabilit-
ies sum up to 1, it means that one of the possibilities will definitly happen. Since the
particle exists, it has to be in some state. And since our linear combination (A.2) in-
cludes all possibilites, one of them must occur. For example, if we roll the dice, the
particular probabilities are 1/6 and they sum up to 1. The quantities cn are called
probability amplitudes. We can find an expression for them as follows: we multiply
expnasion (A.2) from the left side by the function u∗m(x) and integrate (we have been
doing manipulations of this kind). Using the orthonormality, we arrive at

cn =

∫ ∞

−∞
u∗n(x)ψ(x) dx (A.9)

We provide further support for the above interpretation of the numbers |cn|2 as
follows: We have said that the functions un(x) are eigenfunctions of some hermitian
operator, which we now denote as F̂ :

F̂ un(x) = Fnun(x) (A.10)

63It may depend also on time but we need not stress this possible dependence now.
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where Fn is (a real) eigenvalues corresponding to the eigenfunction un(x). Assume
the particle be in a state described by a wave function ψ(x); what is then the expecta-
tion value of the quantity F in this state? According to the 2nd postulate of quantum
mechanics, this expectation value can be calculated as follows:

F̄ =

∫ ∞

−∞
ψ∗(x) F̂ ψ(x) dx (A.11)

By substituting expansion (A.2), using (A.10) and orthonormality (A.6), we obtain

F̄ =
∑
n

|cn|2 Fn (A.12)

Let us now compare this result with formula (1) in our discussion of the bag with the
coins (section 1.2.1). We see that the numbers |cn|2 have a probabilistic interpretation:
|cn|2 is the probability of finding the value Fn in a measurement of the quantity F .
According to (A.10) we can alternatively formulate this finding as follows: |cn|2 is the
probability to find the system in the state un. The complex number cn itself is the
probability amplitute of the result Fn, i.e. of the system being in the state un.

Therefore, if some cn in expansion (A.2) vanishes, the probability of finding the
particle in the corresponding state un is zero. The content of this section complements
the argumentation to the 2nd postulate of QM (section 1.2).

Although we have done all the argumentation for a function of the single variable
x, a generalisation to three variables (x, y, z) = r⃗ would be trivial and coul be done
just by a simple renaming of x to r⃗ and by using triple integrals d3r instead of simple
ones.

A.2 Generalisation of the Argumentation to Many Particle Wave
Function

Ak terazmáme vlnovú funkciu popisujúcu dve častice, je to funkcia dvoch vektorových
premenných Ψ(r⃗1, r⃗2). Chceme ju rozvinúť do nejakého úplného systému funkcií.
Tento úplný systém musí tiež byť tvorený funkciami dvoch premenných:

Ψ(r⃗1, r⃗2) =
∑
n

Cnwn(r⃗1, r⃗2) (A.13)

Typicky používaným spôsobom konštrukcie úplnej sústavy funkcií dvoch premenných
je vyrobiť ich z jednočasticových bázových funkcií:

wn1,n2(r⃗1, r⃗2) = un1(r⃗1)un2(r⃗2) (A.14)
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Že sa to tak dá, sme sa presvedčili na prednáške o Pauliho princípe (časť 8.6); pozri
poznámka pod čiarou ku formule (227). Index n v (A.13) teda môže byť nejaký kom-
pozitný index: n ≡ (n1, n2), ale to je len technická záležitosť. Funkcie wn1,n2 tvoria
úplnú ortonormovanú sústavu funkcií dvoch premenných:∫

w∗
m1,m2

(r⃗1, r⃗2) wn1,n2(r⃗1, r⃗2) d3r1 d3r2 = δm1,m2δn1,n2 (ortonormovanosť)

ako sa dá ľahko presvedčiť.64 Rozvoj (A.13) podrobnejšie napíšeme

Ψ(r⃗1, r⃗2) =
∑
n1

∑
n2

Cn1,n2 un1(r⃗1)un2(r⃗2) (A.15)

Interpretácia je taká, že Cn1,n2 je amplitúda pravdepodobnosti toho, že časticu 1 náj-
deme v stave un1 a zároveň časticu 2 v stave un2 .

Platí teda, že ak je niektoré Cn1,n2 v rozvoji (A.15) nulové, tak to znamená, že je
nulová pravdepodobnosť nájsť časticu 1 v stave un1 a zároveň časticu 2 v stave un2 .
Toto sa priamo využíva v dôkaze Pauliho princípu v časti 8.6; pozri vyjadrenie (231),
kde pre fermióny vychádza Cn,n = 0, čiže nulová pravdepodobnosť nájsť dve častice
v tom istom stave.

B Partition of the Eigenenergy of the Hydrogen Atom of
a Similar Ion into the Kinetic and Potential Energies

We are going to split energy (147) into its kinetic and potential parts. Before doing
so, we note that the ways how it can be expressed may seem to be very different each
other (although they are equivalent):

En = −m
h̄2

(
e2

4πε0

)2
1

2

Z2

n2
=

1

2

1

4πε0

(Ze)(−e)
aZ

1

n2
= −1

2

h̄2

2m

1

a2Z

1

n2
(B.1)

We have introduced the first of the expressions in our derivation of the eigenenergies.
To find the second one, which can easily be done, we used an expression including the
1st Bohr radius of a hydrogen-like ion:

aZ =
aB
Z

(B.2)

64Presvedčiť sa o ortonormovanosti je ľahké. Presvedčiť sa o úplnosti býva zvyčajne ťažšie, ale
nemusíme si prednášku matematicky a technicky príliš komplikovať.
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where aB is the standard 1st Bohr radius, i.e. the one for the hydrogen atom:

aB =
h̄24πε0
me2

= 0,5291772083 . 10−10 m (B.3)

The second expression reminds us the coulombic potential energy between a nucleus of
the chargeZe and an electronwith the charge−e. But it is just half of such energy. The
third expression for the eigenenergy in (B.1) could, of course, be easily derived and we
have chosen its form to remind us the kinetic energy p2/(2m), where the momentum
p = h̄/aZ and there is also the multiplicator −1/2 there.

If we did a calculation according the the Bohr model (which can be done easily
and we will not give the derivation here), we would obtain the kinetic and potential
energies as follows:

Ekin
n = −En =

h̄2

2m

1

a2Z

1

n2
, Epot

n = 2En =
1

4πε0

(Ze)(−e)
aZ

1

n2
(B.4)

The particular portions of the energy really have the classical (although not physically
accurate) interpretation as we have written above.

The calculations of the portions of the total energy En can, of course, be done
correctly in the full quantum-mechanical way. A straightforward way is as follows:
The quantum-mechanical expectation value of the kinetic energy of an electron in a
hydrogen atom or like ion in the state ψnlm(r⃗) is

T̄ =

∫
ψ∗
nlm(r⃗)

(
− h̄2

2m
∆

)
ψnlm(r⃗) d3r (B.5)

Analogously, the quantum-mechanical expectation value of the potential energy of the
electron in this state in the field of a nucleus of charge Ze is

V̄ =

∫
ψ∗
nlm(r⃗)

(
− 1

4πε0

Ze2

r

)
ψnlm(r⃗) d3r (B.6)

where ψnlm(r⃗) is the respective eigenstate (150). Accomplishing relatively lengthy
calculations, we would arrive at

T̄ = Ekin
n , V̄ = Epot

n (B.7)

that is the same result as from the Bohr model. It could be elegantely derived using
the virial theorem which is a quite general one, applying to many situations in both
classical and quantum physics and it says that V̄ = −2T̄ . But we have not derived the
theorem.
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Finally, it is worth recalling that the total energy of the hydrogen atom (or a like ion)
has a sharp (define, zero-uncerytainty) value in the state ψnlm(r⃗). It follows from
the fact that it is an eigenenergy of the operator of the total (kinetic plus potential) en-
ergy. We would easily calculate in mathematically: we would find the mean quadratic
deviation (the second power of the uncertainty) vanishing. However, neither the
kinetic energy alone, nor the potential energy, has a sharp value in this state.
It is because the energy Ekin

n is not an eigenenergy of the kinetic-energy operator T̂ .
Similarly, Epot

n is not an eigenenergy of the potential-energy operator V̂ of the system
under study. As for these particular energies, we can only undestand them as mean
values. In this respect, it is useful to realise that [T̂ , V̂ ] ̸= 0.

C Search for a Local Extremum of a Functions of Many
Complex Variables

Let f be a complex function of the complex variable z = x+ iy. Therefore, we also can
imagine it as a function of two real variables x, y. Assume that the partial derivatves of
f with respect to the real variables x, y exist. How do we calculate its partial derivative
withg respect to the complex variable z? As follows:

∂f

∂z

∣∣∣∣
z∗

=
∂f

∂x

∂x

∂z

∣∣∣∣
z∗
+
∂f

∂y

∂y

∂z

∣∣∣∣
z∗

(C.1)

since x, y are mutually independent real variables. In the procedure we are talking
about, we will also formally consider z and z∗ as mutually independent variables, al-
though this may sound strange. The vertical lines |z∗ emphasize that in the partial
derivatives with respect to z we consider z∗ as a constant. We express the complex
variables z, z∗ using x, y by the equations

z = x+ i y , z∗ = x+ i y (C.2)

and the corresponding inverse relations are

x =
1

2
(z + z∗) , y =

1

2 i (z − z∗) (C.3)

Then we can easily calculate the partial derivatives with respect to z and analogously
also with respect to z∗; we obtain

∂f

∂z

∣∣∣∣
z∗

=
1

2

(
∂f

∂x
− i ∂f

∂y

)
,

∂f

∂z∗

∣∣∣∣
z

=
1

2

(
∂f

∂x
+ i ∂f

∂y

)
(C.4)
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They are called Wirtinger derivatives. We can immediately invert the two equa-
tions (C.4) as follows:

∂f

∂x
=
∂f

∂z

∣∣∣∣
z∗
+

∂f

∂z∗

∣∣∣∣
z

,
∂f

∂y
= i

(
∂f

∂z

∣∣∣∣
z∗
− ∂f

∂z∗

∣∣∣∣
z

)
(C.5)

Now we should look for some extremal point of the function f in the variables x, y.
Therefore, we write down the necessary conditions for the extremum: ∂f/∂x = 0,
∂f/∂y = 0. Using the above written equations, we fid out that this pair of conditions
is equivalent to the pair of equations ∂f/∂z = 0, ∂f/∂z∗ = 0. That is, the following
equivalence holds:(

∂f

∂x
= 0 ∧ ∂f

∂y
= 0

)
⇐⇒

(
∂f

∂z
= 0 ∧ ∂f

∂z∗
= 0

)
(C.6)

The formal constancy of the complex variable no derivative is taken with respect to is
no longer emphasized here for brevity. The generalisation of this procedure for more
complex variables z1, z2, …, zp is straightforward. Finally, we emphasize the need to
strictly distinguish partial derivatives with respect to z from the total derivatives with
respect to z. In the situation we are studying, a total derivation does not even exist,
because the function (182) does not satisfy the Cauchy-Riemann conditions.

D The Helium Atom and Like Ions by the Variational
Method

We solve this problem as an exercise.

D.1 Formulation of the Task and the Proposed Form of Its Solution

The system under study can be H−, He, Li+, Be2+, B3+, C4+, …. The Hamiltonian of
each of such two-electron systems has the form

H = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
1

4πε0

Ze2

r1
− 1

4πε0

Ze2

r2
+

1

4πε0

e2

|r⃗1 − r⃗2|
(D.1)

Z is the number of protons in the nucleus which can be 1, 2, 3, …. The numbers of
electrons in the cloud for the system under study is always 2. The problem to be solved
is

Hψ(r⃗1, r⃗2) = Eψ(r⃗1, r⃗2) (D.2)
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and we want to determine its lowest-energy solution, i.e. the ground state. We will
use the variational principle of quantum mechanics:

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

≥ E0 (D.3)

We choose
ψ(r⃗1, r⃗2) = ϕ(r⃗1)ϕ(r⃗2) (D.4)

to be our trial wave function. In this form, ϕ(r⃗) is the ground state of the hydro-
gen atom or a like ion and we will write its form in next section. The two-particle
wave function (D.4) has a very simple product form meaning that the electrons are
considered as if were mutually independent, i.e. non-interacting with each other and
moving in the field of the helium atom (or of a similar ion). We will include their in-
teraction later in an indirect approximate way. We will do it by chosing the auxiliary
single-particle function ψ such that it will depend on a certain parameter; the value
of the parameter will be set as if the function did not “feel” the complete field of the
nucleus, but only a field partially screened (or weakened) by the effect of the other
electron. Although the interaction of the electron with the other one will not be in-
cluded explicitly, it will at least be included indirectly. Below we specify further steps
of our procedure.

D.2 The Ground State of a Hydrogen-Like Ion

This is an auxiliary section in which we will “derive” how the wave function of a
hydrogen-like ion (i.e. of a single-electron system, countrary to our main task, which
is a two-electron problem) looks like. Although we have derived the wave function, we
perhaps may not have it on hand right now and looking into literature wemay perhaps
find just the hydrogen-atom wavefunction only (i.e. for the proton number 1) and not
the wave functions for the hydrogen-like ions. For the ions, we get the wave function
by simply modifying the hydrogen wave function as described in the following lines.

We know the the hydrogen atom groud state has the 1s-type wave function, that
is

ϕ100(r⃗) =
1

(πa3B)
1/2

e−r/aB (D.5)

where
aB =

h̄24πε0
me2

(D.6)

is the 1st Bohr radius. We aim to find a generalisatin of wave function (D.5) valid for
a hydrogen-like ion with a nucleus of charge βe. It is the dependence of the single-
particle wave function of type (D.5) on the charge of the nucleus that will now be
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important to us. It is obvious that one of the two es in the product ee in expression (D.6)
originates from the nucleus, the other from the electron. Therefore, we obtain the wave
function of the hydrogen-like ion from (D.5) by the substitution

e2 −→ βe2

from which the substitution
aB −→ aβ =

aB
β

follows. βe is the nuclear charge of the hydrogen-like ion under consideration. We
stress that this β is just an auxiliary parameter introduced independently of the true
nuclear charge value Z of the two-electron ion. In what follows, for brevity, we will
denote the standard 1st Bohr radius simply a:

a ≡ aB

For the wave function of a hydrogen-like ion, we get the form

ϕ(r⃗) =
1

(πa3β)
1/2

e−r/aβ =

(
β3

πa3

)1/2

e−βr/a (D.7)

Thus, it is a wave function of the one-electron ion. It would correspond to the hydrogen
atom wave function in the special case of β = 1. In other special case, β = 2, it would
corresponds to the wave function of the He+ ion.

Our goal pursued in the following paragraphs is to find a solution to the prob-
lem (D.2). The corresponding wave function ψ is thus understood as the wave function
of a two-electron atom or ion. Wave function (D.7) will serve as an auxiliary mathem-
atical object to achieve the stated goal.

D.3 The Energy for the Chosen Wave Function ψ

Thus, the trial helium atom (or a like ion) wave function will be [see (D.4)]

ψ(r⃗1, r⃗2) =
β3

πa3
e−β(r1+r2)/a (D.8)

As we see, it depends on the parameter β. We are not going to determine the value of
this parameter immediately, but we reveal in advance that we will later consider it a
variation parameter. The proposedwave function is normalised to unity (

∫
ψ∗ψ d3r1d3r2 =

1, which can easily be verified since
∫
ϕ∗ϕ d3r = 1). Therefore, in our application of
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the variational principle (D.3), it is not necessary to write the denominator and we
write the energy for the proposed state ψ as follows:

E = E(β) =

∫
ψ∗(r⃗1, r⃗2)H ψ(r⃗1, r⃗2) d3r1 d3r2 (D.9)

We emphasized that the value of this energy depends on the auxiliary parameter β.
On the RHS of this equation, the parameter β is found only in the wave function. The
HamiltonianH is independent of the parameter. Substitute the Hamiltonian (D.1) into
the integral (D.9) and we can write the resulting expression in the form of the sum

E = T + V +W (D.10)

where

T =

∫
ψ∗(r⃗1, r⃗2)

(
− h̄2

2m

)
∇2

1 ψ(r⃗1, r⃗2) d3r1 d3r2+ (D.11)

+

∫
ψ∗(r⃗1, r⃗2)

(
− h̄2

2m

)
∇2

2 ψ(r⃗1, r⃗2) d3r1 d3r2

V =

∫
ψ∗(r⃗1, r⃗2)

(
− Ze2

4πε0 r1

)
ψ(r⃗1, r⃗2) d3r1 d3r2+ (D.12)

+

∫
ψ∗(r⃗1, r⃗2)

(
− Ze2

4πε0 r2

)
ψ(r⃗1, r⃗2) d3r1 d3r2

W =

∫
ψ∗(r⃗1, r⃗2)

e2

4πε0 |r⃗1 − r⃗2|
ψ(r⃗1, r⃗2) d3r1 d3r2 (D.13)

D.3.1 Calculation of the Kinetic Energy (T )

T =− h̄2

2m

∫
ϕ∗(r⃗1)ϕ

∗(r⃗2)∇2
1 ϕ(r⃗1)ϕ(r⃗2) d3r1 d3r2

− h̄2

2m

∫
ϕ∗(r⃗1)ϕ

∗(r⃗2)∇2
2 ϕ(r⃗1)ϕ(r⃗2) d3r1 d3r2 =

=− h̄2

2m

∫
d3r1 ϕ∗(r⃗1)∇2

1 ϕ(r⃗1)

∫
d3r2 ϕ∗(r⃗2)ϕ(r⃗2)

− h̄2

2m

∫
d3r2 ϕ∗(r⃗2)∇2

2 ϕ(r⃗2)

∫
d3r1 ϕ∗(r⃗1)ϕ(r⃗1)
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Since the orbitals ϕ(r⃗) of the hydrogen-like ion are normalized to 1, i.e.∫
ϕ∗(r⃗)ϕ(r⃗) d3r = 1

the corresponding integrals do not need to be written further. The choice of partic-
ular symbols for integration variables does not matter, and therefore each of the two
addends in the expression for T will be the same. So we get

T =

(
− h̄2

2m

)
2

∫
ϕ∗(r⃗)∇2 ϕ(r⃗) d3r (D.14)

We now substitute for ϕ according to expression (D.7) and obtain

T = − h̄2

2m
2
β3

πa3

∫
e−βr/a∇2 e−βr/a d3r︸ ︷︷ ︸

I1

≡ − h̄2

2m
2
β3

πa3
I1 (D.15)

We denoted the integral in this expression by I1. Calculate it in spherical coordionates.
Recall that the Laplace operator in these coordinates acquires the form

∇⃗2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ (D.16)

where
∇2

ϑ,φ =
1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2
(D.17)

So, calculate

I1 ≡
∫
e−βr/a∇2 e−βr/a d3r =

∫ ∞

0

dr r2
∫

dΩ e−βr/a∇2 e−βr/a =

=

∫ ∞

0

dr r2
∫

dΩ e−βr/a

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ

]
e−βr/a

The following holds:
∇2

ϑ,φ e
−βr/a = 0

The integration over the spatial angle Ω will be simple because nothing depends on
the angles in the function to be integrated. We have∫

dΩ ≡
∫ π

0

dϑ sinϑ
∫ 2π

0

dφ = 4π
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and so, we can write

I1 = 4π

∫ ∞

0

dr r2e−βr/a 1

r2
∂

∂r

(
r2
∂e−βr/a

∂r

)
= 4π

∫ ∞

0

dr e−βr/a ∂

∂r

(
r2
∂e−βr/a

∂r

)
We will do this integral easily using the per partes (by parts) method. The results is

I1 = −πa
β

(D.18)

Therefore, the quantum-mechanical expectation value of the kinetic energy of the two
electrons under study in the state ψ will be

T = 2
h̄2

2m

(
β

a

)2

= β2 (in a. u.) (D.19)

We explicitly highlighted the factor of 2 to remind ourselves that the kinetic energy
is a sum of the kinetic energies of the two electrons in the atom or ion under study.
We see that Hartree atomic units [in which m = e = h̄ = 1, ε0 = 1/(4π)] make it
extremely easy to write some formulae. If in a specific problem the use of atomic units
would significantly facilitate us, e.g. a derivation procedure, the atomic units ought to
be used. We will soon get to such an opportunity.

D.3.2 Calculation of the Electrons-Nucleus Potential Energy (V )

V = −2
e2

4πε0
Z
β

a
= −2Zβ (in a. u.) (D.20)

D.3.3 Calculation of the Electron-Electron Potential Energy (W )

Themost interesting contribution to the calculated energyE is given by expression (D.13).
It expresses the energy of the electron-electron interaction. We substitute formula (D.8)
for ψ and rewrite the value ofW as follows:

W =
e2

4πε0

1

π2

(
β

a

)6 ∫
exp

[
−2β(r1 + r2)

a

]
1

r12
d3r1 d3r2 ≡ e2

4πε0

1

π2

(
β

a

)6

I3

(D.21)
Thus, in this expression we have denoted the integral alone by

I3 =

∫
exp

[
−2β(r1 + r2)

a

]
1

r12
d3r1 d3r2 (D.22)
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and we calculate it using spherical coordinates as follows:

I3 =

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)∫ dΩ2

r12
(D.23)

Integration over the spatial angle Ω2 can be elegantly managed using an analogy with
electrostatics (the trick of Prof. Peter Lichard, in which a uniformly charged spher-
ical surface with radius r2 is considered and the electrostatic potential at point r1,
which can be at any point in space, is calculated from it). We obtain

∫ dΩ2

r12
=


4π

r1
pre r1 > r2

4π

r2
pre r1 ≤ r2

(D.24)

If we introduce the so-called Heaviside step function

Θ(x) =


1 for x > 0

1/2 for x = 0

0 for x < 0

(D.25)

then the result of the integration over the spatial angle Ω2 can also be written as fol-
lows: ∫ dΩ2

r12
=

4π

r1
Θ(r1 − r2) +

4π

r2
Θ(r2 − r1) (D.26)

We substitute this expression into formula (D.23) and consequently the integral break
into the sum

I3 =

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1
Θ(r1 − r2)

+

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r2
Θ(r2 − r1)

(D.27)
It turns out that both lines of this expression are the same. To see it, it is sufficient to
interchange the ordering of the integrals in the second line. (This is possible because
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so far the integration bounds are the constant values or the infinities, not variables.)

I3 =

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1
Θ(r1 − r2)

+

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)∫
dΩ1

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)
4π

r2
Θ(r2 − r1) =

= 4π

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫ r1

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1

+ 4π

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)∫ r2

0

dr1 r21 exp
(
−2β

a
r1

)
4π

r2
(D.28)

(In both lines, the integration over Ω1 yields the value of 4π.) When we look at these
two added expressions, we see that they differ only in that the indices 1 and 2 are
interchanged. However, the notation used for integration variables cannot matter.
Therefore, both those lines are the same and we can write

I3 = 2 . 4π

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫ r1

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1
=

= 2(4π)2
∫ ∞

0

dr1 r1 exp
(
−2β

a
r1

)∫ r1

0

dr2 r22 exp
(
−2β

a
r2

)
(D.29)

The integrals that appear there can already be calculated by basic methods. First, the
integral over r2 must be calculated, because it has the value r1 as its upper bound. The
overall result is

I3 = 2(4π)2
5

8

(
a

2β

)5

(D.30)

According to (D.21), the integrál W , which has the physical dimension of energy, is
then equal to

W =
e2

4πε0

5

8

β

a
=

5

8
β (in a. u.) (D.31)

D.4 The Energy for the Chosen Wave Function ψ (continuation)

The total energy E, as written down by formulae (D.9)) and (D.10), can now be ex-
pressed by adding contributions (D.19), (D.20) and (D.31) as follows:

E = 2
h̄2

2m

(
β

a

)2

− 2
e2

4πε0
Z
β

a
+

e2

4πε0

5

8

β

a
(D.32)
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To get rid of a number of now irrelevant constants, we express it in Hartree atomic
units [m = e = h̄ = 1, ε0 = 1/(4π) ]. In these, the Bohr radius a gets equal to 1
[see (D.6)]. We obtain a much simpler expression

E = β2 − 2Zβ +
5

8
β = E(β) (D.33)

The unit of energy in Hartree atomic units is 1 Hartree, which is

1Ha =
e2

4πε0

1

a
≡ e′2

a
= 27.2113834 eV = 4.35974380 . 10−18 J (D.34)

as can also be deduced from the energy formulae written above. Thus, an energy in
atomic units can also be understood as a (dimensionless) value of the energy expressed
relative to the value of 1Ha. As already mentioned, the unit of distance in the atomic
units is

1Bohr = a ≡ aB =
h̄24πε0
me2

= 0.5291772083 . 10−10 m (D.35)

D.5 Minimisation of the Energy by the Variational Method

The energy E expressed by formula (D.33) is an energy of the two electrons described
by wave function (D.4) [see also (D.7) and (D.8)] and moving in the central field of the
nucleus with the charge Ze. The wave function (D.4) itself corresponds in its form to
two mutually independent non-interacting electrons, each of them would move in a
central field of the nucleus with charge βe. Hence, the function ψ will certainly not
be correct for the problem under study (helium ot its like ion), especially because it
completely ignores the mutual repulsive interaction of the electrons and, in addition,
it includes the parameter β, the value of which we did not even specify. Nevertheless,
we can improve it as much as possible, or rather set it as best we can, i.e. optimise
it. The only way to do it is to find the best possible parameter β. The criterion of
optimality of the parameter β will be the energy (D.33), which we will try to get as
low as possible, in accordance with the variational principle of quantum mechanics
(Theorem 8). Mathematically, this means finding the minimum of the function E(β).
So, we employ derivatives:

∂E

∂β
= 2β − 2Z +

5

8

and set the condition
∂E

∂β
= 0
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Using it, we obtain the result for the optimal value of the parameter β:

βopt = Z − 5

16
(D.36)

Thus, the mininal energy sought will be

Emin = E(βopt) = −
(
Z − 5

16

)2

= −β2
opt (D.37)

This is our approximate result for the energy of the ground state of the helium atom ot
its like ion. Let us now look at the cases of the individual proton numbers Z (table 1).

Table 1: The energies of the helium atom and its like ions obtained by the one-
parameter variational method.

Z značka Emin (Ha) Emin (eV)

1 H− −0.4727 −12.86

2 He −2.8477 −77.49

3 Li+ −7.2227 −196.53

4 Be2+ −13.5977 −370.01

5 B3+ −21.9727 −597.91

6 C4+ −32.3477 −880.22

D.6 The Ionisation Energy of Helium and of the Like Ions

The first ionisation energy of a (neutral) helium atom is the minimum energy needed
to pull one electron out of it. It is assumed that both helium and the resulting He+
ion are in their ground states. An electron removed by the supply of ionisation energy
moves away from the atom and stops (or has negligible kinetic energy). Since it is far
from the nucleus after being torn out, it also has negligible potential energy. The first
ionisation energy of the helium atom can therefore be calculated as follows:

E ion
1 (He) = E(He+)− E(He) (D.38)

He+ is a hydrogen-like ion; thus we know its ground-state energy exactly: We will get
it from formula (147) with n = 1, Z = 2. As for the helium atom itself, we have just
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determined its energy approximately by the variational method: formula (D.37) with
Z = 2.

Similarly we define the ionisation energies of the helium/like ions H−, Li+, etc.
These, however, will not be the 1st ionisation energies of neutral atoms, but of the ions.
To však už nebudú 1. ionizačné energie neutrálnych atómov, ale iónov. For instance,
using the formula

E ion(Li+) = E(Li2+)− E(Li+) (D.39)

we calculate this energy for the lithium kation. Table 2 lists and compares these val-
ues also with experimental ones taken from [1]. All the energies in this table are in
Hartrees. The negative value in the case of the anion H− is non-physical. We determ-

Table 2: The ionisation energies of helium and its like ions, obtained by the one-
parameter variational method. All the energies in this table are in the atomic units
(Ha). The experimental energies have been taken from [1].

Z symbol experiment the variational method

1 H− 0.055 −0.0273

2 He 0.90331(4) 0.8477

3 Li+ 2.7798(5) 2.7227

4 Be2+ ——– 5.5977

5 B3+ ——– 9.4727

6 C4+ 14.407(4) 14.3477

ined it by the equation
E ion(H−) = E(H)− E(H−) (D.40)

The negative value indicates that the variational method that we used is completely
incapable to calculate the ionisation energy of this anion. This is because the energy
of the anion H− is too high by this method (−0.4727 Ha). For the other ions (as well
as helium itself), however, the simple variational method explained here gives surpris-
ingly good results (given how simple it is). If we used a variational method with more
parameters, we would get results closer to the experimental ones and the value of the
ionisation energy for H− would be positive. Physically, a negative ionization energy
would mean that the ion H− would be unstable. In fact, this ion exists and is extremely
important for the opacity of the atmosphere of the Sun and similar stars (D. Chalonge,
1946). The H− ion can exist in a stable way in its ground state only. (Its bound excited
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state does not exist.) One proton is able to keep at two electrons only in their ground
state.

D.7 The Effect of Screening

For the ground state energy of the helium atom and similar ions, we derived the ex-
pression

E = − e′2

a

(
Z − 5

16

)2

(D.41)

This expression can be broken down into the sum of two identical ones:

E = −1

2

e′2

a

(
Z − 5

16

)2

− 1

2

e′2

a

(
Z − 5

16

)2

(D.42)

Each of these two terms has a form such as the ground state energy of a hydrogen-like
ion (i.e., the energy of a single-electron system); see expression (147), which can indeed
be easily adapted to the form

E1 = −1

2

e′2

a
Z2 (D.43)

However, in the above expression (D.42) for the energy of the helium atom or a similar
ion, the value of Z − 5/16 acts as if it were a proton number, not the value of Z .
Therefore, we can introduce an effective proton number

Zeff = Z − 5

16
(D.44)

For helium, its value is Zeff(He) = 27/16. The electrons thus shield or screen each
other from the nucleus, and each of them moves like in a spherically symmetric field
of one and the same effective nucleus (in the field that is the sum of the field of the
real nucleus and the other electron). Such an interpretation is correct thanks to the
approximation we used, namely that we have written the wave function in a factorised
form separating the variables r⃗1 and r⃗2.

E The Hartree Method

The Task to Be Solved. Máme riešiť problém (261). V Hartreeho metóde budeme
neznámu vlnovú funkciu Ψ hľadať v tvare Hartreeho súčinu. Pri výklade Hartreeho
metódy sa obvykle ignoruje spin [1], čo spravíme aj my. Budeme teda riešiť týmto
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spôsobom zjednodušenú verziu úlohy (261). Vlnovú funkciu označíme a vyjadríme
výrazom

ψ(r⃗1, . . . , r⃗N) = φ1(r⃗1) . . . φN(r⃗N) (E.1)
Je to tiež Hartreeho súčin, tentoraz závislý iba od priestorových súradníc. Hartreeho
metóda je istou realizáciou variačnej metódy; pozri odsek 6.1. V zmysle tejto metódy
potom funkciu (E.1) budeme považovať za pokusnú funkciu, na ktorú aplikujeme vari-
ačnú metódu. Ak by sme zabezpečili, že menovateľ zlomku (167) vo variačnej metóde
by bol rovný 1, celkovú energiu sústavy by sme mohli hľadať minimalizáciou výrazu

G =

∫
ψ∗(r⃗1, . . . , r⃗N) Ĥ ψ(r⃗1, . . . , r⃗N) dτ ≥ E0 (E.2)

kde dτ ≡ d3r1 . . . d3rN . G vtedy predstavuje kvantovomechanickú strednú hodnotu
energie sústavy nachádzajúcej sa v staveψ. Jednotkovosťmenovateľa v (167) znamená,
že mnohočasticová funkcia ψ je normovaná na 1:∫

ψ∗(r⃗1, . . . , r⃗N)ψ(r⃗1, . . . , r⃗N) dτ = 1 (E.3)

Keďže výraz G závisí od funkcií (máme na mysli tie φi), nazývame ho funkcionál. Nor-
movanie ψ na 1 dosiahneme tým, že aj pre jednočasticové funkcie budeme požadovať,
aby platilo ∫

φ∗
i (r⃗)φi(r⃗) d3r = 1 , ∀i (E.4)

Splnenie týchto normovacích podmienok zabezpečíme použitím Lagrangeových mul-
tiplikátorov. Preto definujeme rozšírený funkcionál

G = G −
N∑
i=1

λi

(∫
φ∗
i (r⃗)φi(r⃗) d3r − 1

)
(E.5)

kde λi sú spomínané Lagrangeove multiplikátory. Namiesto jednoduchšieho funk-
cionálu (E.2) teda budeme minimalizovať G. Jednočasticové funkcie φi vystupujúce
v (E.1) sú neznáme a našou úlohou je nájsť ich tak, aby bola hodnota G čo najmenšia.
Funkcie φi teda majú úlohu variačných parametrov.

Fyzikálne parametre problému, ktorý treba riešiť, sú definované Hamiltoniánom.
Ten zoberme podobný ako (258), ale bez spinovej časti, čo je často veľmi dobré priblíženie.
Hamiltonián teda teraz zapíšeme

Ĥ =
N∑
i=1

ĥ(i) +
1

2

N∑
i,j=1

ŵ(i, j) (E.6)
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kde

ĥ(i) ≡ ĥ(r⃗i) = − h̄2

2m
∇⃗2

i + v̂ext(r⃗i) (E.7)

a

ŵ(i, j) =


e2

4πε0

1

|r⃗i − r⃗j|
, i ̸= j

0 , i = j

(E.8)

The Functional Representing Energy for Given Wave Function (E.1). Celý funk-
cionál (E.5) je praktické rozpísať si a následne zjednodušiť takto:

G = G + L = G(1) + G(2) + L (E.9)

kde

G(1) ≡
∫
ψ∗(r⃗1, . . . , r⃗N)

[
N∑
i=1

ĥ(i)

]
ψ(r⃗1, . . . , r⃗N) dτ =

N∑
i=1

∫
φ∗
i ĥ(i) φi d3ri =

(E.10)

=
(
na označení integ. prem. nezáleží

)
=

N∑
i=1

∫
φ∗
i (r⃗) ĥ(r⃗) φi(r⃗) d3r (E.11)

G(2) ≡
∫
ψ∗(r⃗1, . . . , r⃗N)

[
1

2

N∑
i,j=1

ŵ(i, j)

]
ψ(r⃗1, . . . , r⃗N) dτ = (E.12)

=
1

2

N∑
i,j=1

∫
φ∗
i (r⃗i)φ

∗
j(r⃗j) ŵ(i, j)φi(r⃗i)φj(r⃗j) d3ri d3rj (E.13)

L ≡ −
N∑
i=1

λi

[∫
φ∗
i (r⃗)φi(r⃗) d3r − 1

]
(E.14)

Minimisation of the Functional (and of the Energy). Chceme zistiť, pri akých funk-
ciách φi bude funkcionál G minimálny. Ide o niečo analogické ku hľadaniu min-
ima funkcie, kedy sa funkcia derivuje. Tu však máme hľadať minimum funkcionálu.
Namiesto jednoduchého derivovania budeme funkcionál G varírovať, čo znamená, že
skúsime, ako sa zmení pri malej zmene funkcií φi, od ktorých závisí. Uvažujme teda
takúto variáciu funkcií φi:

φi −→ φi + δφi (E.15)
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Potom sa funkcionál zmení takto:

G[φ] −→ G[φ+ δφ] = G[φ] + δG (E.16)

a obdobne sa to dá písať aj pre jeho jednotlivé zložky G(1), G(2) a L. Pre súčet jed-
nočasticových integrálov v sume vyššie teda máme

G(1)[φ] −→ G(1)[φ+ δφ] =
N∑
i=1

∫
(φi + δφi)

∗ ĥ(i) (φi + δφi) d3ri =

= G(1)[φ] +
N∑
i=1

∫
δφ∗

i ĥ(i) φi d3ri +
N∑
i=1

∫
[ĥ(i) φi]

∗δφi d3ri︸ ︷︷ ︸
δG(1)

+

(E.17)
+ členy 2. rádu v δφk , ktoré sú zanedbateľné

Všimnime si, že druhý člen v δG(1) je komplexne združený k prvému.
Aj pri počítaní s dvojčasticovými integrálmi budeme miestami kvôli stručnosti

vynechávať písanie argumentov funkcií φ; ak sú vynechané, tak platí φi ≡ φi(i) ≡
φi(r⃗i), φj ≡ φj(j) ≡ φj(r⃗j). Pre variáciu sumy dvojčasticových integrálov (E.13)
dostávame postupom podobným než vyššie, len zložitejším, toto [pričom využijeme,
že ŵ(i, j) = ŵ(j, i) a že sumačné indexy môžeme ľubovoľne premenovať, aj vymeniť
(i↔ j) medzi sebou]:

δG(2) =
N∑

i,j=1

∫
δφ∗

i φ
∗
j ŵ(i, j) φi φj d3ri d3rj +

N∑
i,j=1

∫
φ∗
i φ

∗
j ŵ(i, j) δφi φj d3ri d3rj

(E.18)
Aj tu je druhý člen komplexne združený k prvému. Aby sme spočítali aj variáciu
funkcionálu G, nielen G, zostáva ešte spočítať variáciu člena s Lagrangeovými mul-
tiplikátormi, pozri (E.14). Tá sa počíta ľahko a je

δL = −
N∑
i=1

λi

(∫
δφ∗

i φi d3r +
∫
φ∗
i δφi d3r

)
(E.19)

Teraz už vieme napísať, čomu sa rovná variácia celého funkcionáluG, pozri (E.5), (E.9).
Potrebujeme na to zozbierať výsledky (E.17), (E.18) a (E.19). Dostávame

δG ≡ G[φ+ δφ]−G[φ] = δG(1) + δG(2) + δL (E.20)
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a teda

δG =
N∑
i=1

∫
d3ri δφ∗

i

(
ĥ(i) +

N∑
j=1

∫
d3rj φ∗

j ŵ(i, j)φj − λi

)
φi + k.z. (E.21)

kde k.z. označuje členy komplexne združené s predošlými.
Ako sme povedali už skôr, snažíme sa hľadať, pri akých funkciách φi je funkcionál

G minimálny. Tak ako pri funkcii je v okolí jej extrému nulová prvá derivácia, čiže
v prvom ráde nulová zmena, tak pri funkcionáli je v okolí jeho extrému nulová variácia.
Preto kvôli nájdeniu minimalizujúcich funkcií φi požadujeme

δG = 0 (E.22)

Aby toto bolo splnené pre ľubovoľné variácie δφi, musí byť výraz (. . . . . . )φi vo for-
mule (E.21) nulový.65 Musia teda platiť rovnice[

ĥ(i) +
N∑
j=1

∫
d3rj φ∗

j(j) ŵ(i, j)φj(j)

]
φi(i) = λiφi(i) (E.23)

Pripomeňme, že ŵ(i, i) ≡ 0, a teda členy s j = i v týchto rovniciach vypadnú.
„k.z.“ v rovnici (E.21) nám dá len komplexne združenú rovnicu ku práve napísanej,
teda žiadnu novú rovnicu. Na označení integračnej premennej r⃗j v rovniciach (E.23)
nemôže záležať. Ani písanie indexu i vo vonkajšej premennej r⃗i teraz už nie je nutné.
Rovnice (E.23) sa preto dajú písať (trochu podrobnejšie) aj takto:ĥ(r⃗) + N∑

j=1
j ̸=i

e2

4πε0

∫
d3r′ φ∗

j(r⃗
′)

1

|r⃗ − r⃗ ′|
φj(r⃗

′)

φi(r⃗) = λiφi(r⃗) (E.24)

i ∈ {1, 2, . . . , N}

Rovnice (E.24) predstavujú sústavu N integrálno-diferenciálnych rovníc pre neznáme
funkcieφi. Vyriešením týchto rovníc teda nájdeme funkcie, ktoré extremalizujú (zvyča-
jne minimalizujú) funkcionálG. Hodnota tohoto funkcionálu v takom prípade je prib-
ližnou vlastnou energiou základného stavu sústavy. Sústava rovníc (E.24) [tak isto
aj (E.23)] sa nazýva Hartreeho rovnice (HR). Jednotlivé rovnice tejto sústavy svojou
formou pripomínajú bezčasovú Schrödingerovu rovnicu.

65Samotný obsah tých zátvoriek nemá číselnú hodnotu, je to len operátor. Preto v tom nulovom
výraze musí byť sprava aj φi.
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The physical meaning of the sum in the Hartree equations. Na jeho pochopenie
stačí najprv v i-tej HR skúmať jeden člen (t. j. pre jedno j rôzne od i). Hodnota
výrazu φ∗

i (r⃗
′)φi(r⃗

′) je hustota pravdepodobnosti výskytu elektrónu s vlnovou funk-
ciou φj(r⃗

′) v mieste r⃗ ′. Výraz (−e)|φj(r⃗
′)|2 je potom hustota elektrického náboja

vytváraná takým elektrónom; je to hustota v kvantovo-mechanickom zmysle priemernej
hodnoty v danom bode priestoru. Výraz∫

1

4πε0

(−e)|φj(r⃗
′)|2

|r⃗ − r⃗ ′|
d3r′ def

= uj(r⃗) (E.25)

je priemerný elektrostatický potenciál v mieste r⃗ vytváraný elektrónom s vlnovou
funkciou φj(r⃗

′). Preto
N∑
j=1
j ̸=i

uj(r⃗)
def
= UHartree

i (r⃗) (E.26)

je ustrednený elektrostatický potenciál, ktorý vytvárajú v mieste r⃗ všetky elektróny
okrem i-teho (t. j. toho, ktorý obsadzuje orbitál φi). Voláme ho aj Hartreeho potenciál.
Celá suma cez j v HR teda je

N∑
j=1
j ̸=i

e2

4πε0

∫
d3r′ φ∗

j(r⃗
′)

1

|r⃗ − r⃗ ′|
φj(r⃗

′) = −eUHartree
i (r⃗) = V Hartree

i (r⃗) (E.27)

a má význam potenciálnej energie i-teho elektrónu v ustrednenom poli všetkých os-
tatných elektrónov. Je priestorovo závislá (preto sa nazýva potenciálna) a často ju preto
tiež nazývajú Hartreeho potenciál [ale treba mať na pamäti, že v SI sústave majú po-
tenciál a potenciálna energia odlišné jednotky a teda nie sú to totožné veličiny, i keď
sa líšia len o triviálny násobok (−e)].

V tejto súvislosti si ešte všimnime sumu G(2) elektrón-elektrónových odpudivých
energií vyjadrenú príspevkom (E.13). Na základe vyššie zavedenej Hartreeho poten-
ciálnej energie sa dá zapísať

G(2) =
1

2

N∑
i=1

∫
φ∗
i (r⃗)V

Hartree
i (r⃗)φi(r⃗) d3r (E.28)

Orbitals in the Hartree Equations. The Effective Orbitals-Dependent Hamiltonian.
HR (E.24) sa teda dajú kompaktne zapísať[

ĥ(r⃗) + V Hartree
i (r⃗)

]
︸ ︷︷ ︸

ĥeff
i

φi(r⃗) = λiφi(r⃗) (E.29)
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Veľmi pripomínajú sústavu navzájom nezávislých rovníc (263) z motivačnej časti. Je
tu však jedna komplikácia: efektívny jednočasticový potenciál v (E.29) závisí od or-
bitálov φj , čo sú neznáme funkcie. Tieto neznáme funkcie v HR vystupujú v kubickej
forme. HR sú preto nelineárne a nie sú až tak jednoduché, ako sme si to na začiatku
predstavovali v motivačnej časti.

Jednotlivé orbitályφi sú vlastnými funkciami navzájomodlišných efektívnych hamilton-
iánov (ktoré sa preto tiež musia indexovať). VyriešenímHR tak dostaneme orbitály, kt-
oré nie sú navzájom ortogonálne. Podmienku ortogonálnosti sme ani nikde nepoužili.
Naozaj: pri minimalizácii sme len naložili podmienku (E.4), že orbitály majú byť nor-
mované na 1.

Solution of theHartree equations. HRpredstavujú sústavuN integrálno-diferenciálnych
rovníc. Rieši sa metódou postupných iterácií: na začiatku si zvolíme nejaké štartovacie
funkcie

φ
(0)
1 , φ

(0)
2 , . . . , φ

(0)
N (E.30)

Napr. ak riešime HR pre atóm, tak za φ(0)
i môžeme zvoliť presne známe vlastné funkcie

pre vodíku podobný ión. Z týchto štartovacích funkcií určíme začiatočnú hodnotu
Hartreeho potenciálu U (0)

i (r⃗) (ktorá je určite ešte veľmi nesprávna). Z U (0)
i (r⃗) potom

riešením HR dostaneme už spresnené (ale stále veľmi hrubé) jednočasticové funkcie

φ
(1)
1 , φ

(1)
2 , . . . , φ

(1)
N (E.31)

a aj prvý odhad Lagrangeových multiplikátorov λ(1)i . Tým máme ukončenú prvú iter-
áciu. A tak ďalej iterujeme, až raz skončíme, a to napr. vtedy, keď rozdiel medzi výs-
tupmi po sebe idúcich iterácií bude zanedbateľný. Vtedy už budú orbitály φi konzist-
entné sHartreeho potenciálom. Výsledné elektrostatické pole od uvažovaných elektrónov
nazývame self-konzistentné pole; pojem samosúhlasné pole sa používa menej často.

O význame vlastných hodnôt a jednočasticových funkcií sme si povedali pri štúdiu
Hartreeho-Fockovej metódy. Samotná Hartreeho metóda sa v praxi používa zriedka,
lebo nerešpektuje antisymetriu vlnovej funkcie.
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F Functionals

F.1 An Intuitive Explanation of Functionals

Taylor expansion of a function of one variable:

f(x+∆x) = f(x) +
1

1!

df
dx

∣∣∣∣
x

∆x+
1

2!

d2f
dx2

∣∣∣∣
x

(∆x)2 +
1

3!

d3f
dx3

∣∣∣∣
x

(∆x)3 + . . . (F.1)

Taylor expansion of a function ofm variables:

f(x1 +∆x1, x2 +∆x2, . . . , xn +∆xm) = (F.2)

f(x1, x2, . . . , xm) +
1

1!

m∑
i=1

∂f

∂xi

∣∣∣∣
x

∆xi +
1

2!

m∑
i=1

m∑
j=1

∂2f

∂xi∂xj

∣∣∣∣
x

(∆xi) (∆xj) + . . .

The vertical lines |x says us: do the derivative and then evaluate it at x. For the func-
tions on n variables, we used the shortcut

x ≡ x1, x2, . . . , xm (F.3)

A Functional. It is a mathematical form that depends on some function, i.e. not on an
elementary variable or variables like x1, …, xm. A nice examples is the Thomas-Fermi
(TF) kinetic-energy functional (410):

TTF[n] = CF

∫
n5/3(r⃗) d3r (F.4)

It depends on the electron density n(r⃗), which itself is a function. Let us further use the
notationF [n] for a functional depending of a functionn(r⃗) (which need not necessarily
be a density). The function n(r⃗) is defined on some spatial domain D (which can be
either finite such as a cubic box or a sphere) or infinite. In any such case, the domain
contain an infinite number of spatial points that typically form a continuum and we
will consider this type of damains. We can, however, discretise the spatial domain, i.e.
to divide it between some finite number of grid points. Such a procedure is often being
done for a purpose like numerical integration (quadrature) and, certainly, we would
find several other examples from numerical mathematic. Here, however, we use the
discretisation of space for the purpose of a theoretical analysis. Let the grid points be

r⃗1, r⃗2, . . . , r⃗m (F.5)
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In such a discrete representation, the functional F [n] becomes a function ofm spatial
variables:

F (n(r⃗1 ), n(r⃗2 ), . . . , n(r⃗m )) (F.6)

To make notation more compact we introduce

ni ≡ n(r⃗i ) (F.7)

and then the liist of the variables on which the function F depends, is n1, n2, . . . , nm:

F = F (n1, n2, . . . , nm) (F.8)

Let us now consider that the function n(r⃗) is slightly modified by an amount δn(r⃗):

n(r⃗) −→ n(r⃗) + δn(r⃗) (F.9)

How the functional F [n] changes upon such variation of n(r⃗)? Formally, we express
the variation δF [n] of the functional F [n] as follows:

F [n] −→ F [n+ δn] = F [n] + δF [n] (F.10)

The last equation defines what is meant by a variation of a functional, δF [n]; the
term variation is used for functionals, not for functions. Since we have discretised
the functional [converted it to the function (F.8)] and since the quantities δn(r⃗) are
small enough, we can now take advantage of the Taylor expansion (F.2) to answer the
above question by calculating F [n+ δn] in the discrete representation:

F (n1 + δn1, . . . , nm + δnm) = F (n1, . . . , nm) + (F.11)

+
m∑
i=1

∂F

∂ni

∣∣∣∣
n

δni +
1

2

m∑
i=1

m∑
j=1

∂2F

∂ni∂nj

∣∣∣∣
n

δni δnj + . . .

Because the grid can be very dense, we can replace the summations over the grid points
by integrals over the spatial domain D:

F (n1 + δn1, . . . , nm + δnm) = F (n1, . . . , nm) + (F.12)

+

∫
D

∂F

∂n(r⃗)

∣∣∣∣
n

δn(r⃗) d3r +

+
1

2

∫
D
d3r
∫
D
d3r′ ∂2F

∂n(r⃗)∂n(r⃗ ′)

∣∣∣∣
n

δn(r⃗) δn(r⃗ ′) + . . .
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Thus, after the short trip to common functions, we are back to the world of functionals;
the last formula in the brief language of functionals is rewritten as

F [n+ δn] = F [n] +

∫
D
d3r δF

δn(r⃗)

∣∣∣∣
n

δn(r⃗) + (F.13)

+
1

2

∫
D
d3r
∫
D
d3r′ δ2F

δn(r⃗)δn(r⃗ ′)

∣∣∣∣
n

δn(r⃗) δn(r⃗ ′) + . . .

The expressions
δF

δn(r⃗)
,

δ2F

δn(r⃗)δn(r⃗ ′)

are the first and the second functional derivatives of the given functional, F [n], re-
spectively. In the above exansions, they are evaluate at the density n(r⃗) [not at n(r⃗)+
δn(r⃗)]. By comparing (F.13) to (F.12) we immediatelly see the principal meaning of the
concept of a functional derivative.

By definition, a variation of the functional is defined by [see (F.10)]

δF [n] = F [n+ δn]− F [n] (F.14)

Now, if we are searching for a local extremum (a minimum or maximum) of the func-
tional, the necessary condition expressed in the discretised form is

∂F

∂ni

∣∣∣∣
ext

= 0 , ∀i ∈ {1, 2, . . . ,m} (F.15)

We see that the functional form of this condition is

δF

δn(r⃗)

∣∣∣∣
n0

= 0 (F.16)

(the necessary condition of a local extremum of the functional). Very often, this equa-
tion is sufficient to use do determine a minimum or maximum. Its solution is the
extermising function n0(r⃗), i.e. the one at which the functional takes its minimum or
maximum (may not be a global one).

If δn is very small in (F.13), the first two terms then become sufficient to keep and
we can then express variation (F.14) around some arbitrary chosen function n(r⃗) as

δF [n] =

∫
D
d3r δF

δn(r⃗)

∣∣∣∣
n

δn(r⃗) , for δn(r⃗) → 0 (F.17)
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If the chosen function n(r⃗) is n0(r⃗), then the variation δF [n] vanishes. Hence, we
derived the frequently used formula of the variational calculus:

δF [n] = 0 at a local minimum or maximum (F.18)

It is just as when differential of a common function like f(x) of eq. (F.1) vanishes at
any extremal point of the function.

F.2 On the Kohn-Sham Mapping (or Ansatz)

The Hohenberg-Kohn total-energy functional is given by (453):

Ev[n] = T [n] +W [n] +

∫
n(r⃗)vext(r⃗) d3r (F.19)

In this expression, the forms of T [n] andW [n] are unknown; hence such a functional
can not have any direct practical use. According to Kohn and Sham, we can, however,
introduce the auxiliary (or reference) system of non-interacting electrons such as to
provide the same ground-state density. A wave function of such a system has the form
of a Slater determinant, exactly as in the Hartree-Fock theory. (So, both in the HF
theory and in the DFT, total wave functions are some Slater determinants.)

Denote the non-interacting kinetic energy by symbol Ts[n] [see (456)]. We now
can add and substract Ts[n] in (F.19) and regroup the terms:

Ev[n] = Ts[n] +

∫
n(r⃗)vext(r⃗) d3r +W [n] + T [n]− Ts[n] (F.20)

T [n]−Ts[n] is some difficult part of the kinetic energy. We also know that the electron-
electron interation energy, W [n], contains an “easy” component (that is, easy to ex-
press using the density). It is the Hartree energy, obviosly a relatively big component
ofW [n]; see (301) for its first occurence in our course, then (413) of the Thomas-Fermi
theory, and finally (456) of the Kohn-Sham theory. So, decompose alsoW [n]:

W [n] = EHartree[n] +Wrest (F.21)

Thus, the total-energy functional (F.20) can be expressed as

Ev[n] = Ts[n] +

∫
n(r⃗)vext(r⃗) d3r + EHartree[n] + T [n]− Ts[n] +Wrest︸ ︷︷ ︸

Exc[n]

= (F.22)

= EKS[n]
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(It is the same expression as (456). And it has to be understood as the definition of
Exc[n].) So, the difficult-to-express but, fortunatelly, relatively small part was denoted
as Exc[n]. It is called exchange-correlation energy. We know from the HF theory
that there must be the exchange-energy contribution to the total energy. Since this
contributions is neither in Ts[n] nor in the interaction energy with the external field, it
then obviously must be a part of T [n]−Ts[n]+Wrest ≡ Exc[n]. A similar consideration
holds for the correlation energy.

Now, if we want to find a local minimum of the Kohn-Sham functional, (F.22), we
have to keep the correct number of the electrons, N , in the minimisation. We do in
using a Lagrange multiplier, exactly as we have done it in the TF theory, see (415).
Therefore, again an augmented functional,

ΩKS[n] = EKS[n]− µ

[∫
n(r⃗) d3r −N

]
(F.23)

is to be minimised. We do the minimisation by requesting that at the minimising
density n0(r⃗),

δΩKS[n] = 0 (F.24)

for very small variations δn(r⃗) around the minimising density. Alternatively, we can
set the condition (see section F.1)

δΩKS

δn(r⃗)

∣∣∣∣
n0

= 0 (F.25)

This yields the Kohn-Sham equation for the ground-state density n0 which is the dens-
ity that minimises the functional ΩKS[n], also (and importantly) the Kohn-Sham func-
tional (F.22) [and also the orginal functional (F.19) of Hohenberg and Kohn] as that
one is equal to the KS functional by definition. Note also, that people often omit the
term with N in (F.23) for it is a constant only and has no effect in the serach for the
minimum.

In practical calcuations, we are not able to find the exact functional Exc[n]. There-
fore, although the exact equality of the HK and KS functionals holds in theory, we do
not meet it in practice.
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