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Almost all commonly perceived manifestations of matter are somehow related to electrons in atoms, molecules
or crystals:

• We see objects around us. For this, light is needed. A photon (a quantum of energy of light) is emitted from an
atom (or from a moelcule or cystal). It carries some energy. This energy had to be released somehow by the atom.
In the early 20th century, physisists discovered that an atom is made up of a small and heavy positively charged
nucleus and light and negatively charged electrons moving around the nucleus. Electrons moving in the field of
a nucleus have some energy. This energy can be decreased by emiting a photon. So how we visually perceive or
measure objects with optical instruments is related to the electronic structure of atoms, molecules and solids.

• Mechanical properties of matter (elasticity, hardness, viscosity, etc). They may, of course, depend also on atomic
masses. Above all, however, they are influenced by the nature of the interactions and forces acting between atoms
andmolecules. These interactions are related to the distribution of electrons in matter. The nuclei of atoms usually
enter the description of these properties effectively only as point (classical) particles with certain masses, charges
and possibly also with internal angular momenta (spins of the nuclei).

• Chemical reactions. They are a unique example in that very rich manifestations of electronic structure of atoms,
ions, molecules as well as radicals can be observed. Some substances react together, others do not. It depends on
their ability to form a chemical bond, and this ability depends on the specific properties of the electron shells of
the atoms and molecules in the substance.

• Electrical conductivity. Metals are typical conductors. Their electrical conductivity is caused by the presence
of conduction electrons, which can move under the influence of the loaded electric field (i.e voltage). Whether
a material contains conductive electrons or other charge carriers (e.g., holes) also depends on the type of atoms
(and the number of electrons in them), i.e., what electronic structure they form.

Since the physics of the world of electrons, atoms, molecules and crystals is quantum physics, this lecture will make
extensive use of it.

1 Reminder of Basis Postulates ofQuantum Mechanics

Although some of you have already completed the course of Quantum Mechanics (QM), it will first be useful
to recall in some condensed form and summarize what we will need from it. In this introductory lecture, we will
briefly go through the postulates of QM. They are postulates of wave QM, i.e. QM written in the formalism of wave
functions, and for the sake of simplicity only for a one-particle system. We will approach by exposing selected and
condensed topics mostly according to [1].
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1.1 The First Postulate ofQuantum Mechanics

Electrons in matter, as well as other objects of the microworld with relatively small energies, are generally
not well described by classical concepts of position and momentum. Instead, we use wavefunctions and a certain
statistical apparatus.

The probability density of finding a particle at certain point r⃗ is defined by formula

ρ(r⃗, t) =
dP
dV

And here is the postulate:

To every state of a particle, a complex function ψ(r⃗, t) is assigned, such that it perfectly character-
ises the state (completely describes it). Square of the absolute value of the function is equal to the
probability density of finding the particle at the point r⃗ at time t:

ρ(r⃗, t) = |ψ(r⃗, t)|2

So we have
dP (r⃗, t) = ρ(r⃗, t) dV

Implication 1: For a finite spatial domain Ω, the following formula applies:

P (Ω, t) =

∫
Ω

ρ(r⃗, t) d3r

Implication 2: Because the particle must be somewhere, we have∫
ψ∗(r⃗, t)ψ(r⃗, t) d3r = 1

From this we obtain two conditions for ψ:

(1) In order for this intergal to exist, it must hold that

lim
|r⃗|→∞

ψ = 0

(2) ψ has to be such that the whole integral does not depend on time (although ψ∗ψ may depend on time).

1.2 The Second Postulate ofQuantum Mechanics

This postulate concerns the determination of the mean values of physical quantities. Before we express it, we
must introduce certain concepts and learn certain knowledge about operators in QM.

1.2.1 Mean Values of the Coordinates. PureQuantum Ensemble

Measured quantities in quantum-mechanical systems usually acquire random values. Therefore, it makes sense
to ask about their average (mean) values. In this introduction, let us consider an example from elementary statist-
ics [1]: we have a bag with coins of different values:
N1 coins with a value h1, N2 coins with a value h2, …, Nn coins with a value hn.
The total number of coins is

N1 +N2 + · · ·+Nn = N

The total value of coins is
N1h1 +N2h2 + · · ·+Nnhn = h
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The average value of one coin is

h̄ =
h

N
=

N1

N
h1 +

N2

N
h2 + · · ·+ Nn

N
hn

Suppose that all the coins have same size and weight. We shake the bag well and take out one randomly selected
coin. What is the likehood that it has the value h1? Obviously,

P1 =
N1

N
; a obdobne ďalšie: P2 =

N2

N
, . . . , Pn =

Nn

N

Thus, the average value of one coin can be expressed by formula

h̄ =
n∑

i=1

Pihi (1)

Let us now focus our attention on the particle moving, for simplicity, along a segment of a straight line. Imagine that
we know the probability density ρ(x) of finding the particle at any point x. [It need not be a quantum-mechanical
(QM) particle; we just need such a onemotion of which has a random nature.] What is themean (average) coordinate
of such a particle? Countrary to the example with coins, here we have a continguous set of possible values, that is
also and infinite set. Anyway, we find the following result:

x̄ =

∫ b

a

dx ρ(x)x

And now let us go to QM. We know that the probability density of finding a QM particle is ρ(x, t) = ψ∗(x, t)ψ(x, t).
Therefore

x̄(t) =

∫ b

a

ψ∗(x, t)xψ(x, t) dx

It might have beenwrittenmore compactly butwewill see that is has a sense to expand it aswe have done. Compared
to the previous examples, we have also the time here for ρmay vary with time. But the time stands here as a trivial
parameter only. (There is no integration over the time and the same time is on both sides of the equality.)

What actually do we mean by a mean value (e.g. of a coordinate) in QM? For instance, we would like to measure
the average position of an electron in a hydrogen atom being in a certain quantum state (characterised by a certain
wavefunction). Or, what might be easier done, the average position of an electron in a potential well, in the simplest
case one-dimensional.1 In general, however, it is a three-dimensional problem and in such a case we, therefore,
would aim to determine not only x̄, but also ȳ and z̄. We would basically proceed as follows: We would prepare
a large number of hydrogen atoms in an identical manner, so that all of them would be described by the same
wavefunction ψ(r⃗, t). Such an ensemble (a set of systems with the same wavefunction) is called a pure quantum
ensemble. We would placed a tiny measuring device at each of the atoms such that it would be able to record the
position of the electron on demand at time t. Using the measures position vectors from the individual atoms, we
woudl then calculated their average value. We would declare this to be the quantum-mechanical expectation value
(a mean value).

Knowing what to understand by the expectation value of a position vector in QM, let us express it with the aid
of the wavefunction. When considering the three dimensions, we have to write, for instance,

dP = ρ(r⃗, t) dx dy dz = ρ(r⃗, t) d3r

and other notations are also being used for the volume element d3r. Otherwise, however, the formula will have the
same structure:

x̄(t) =

∫
ψ∗(r⃗, t)xψ(r⃗, t) d3r (2)

and the integration goes over the entire (infinite) space; in such a case (multidimensional integrals) we usually write
a single integration symbol only and we omit writing the integration bounds. Of course, formulae for the y and z
coordinates would be written quite analogously.

1In a real experiment, it would mean that one of the dimensions – the length – of such a structure would be much larger than the
remaining two dimensions. Such a groove might technologically be formed on a surface of a solid material or at an interface of surfaces.
Even a two-dimensional structure, i.e. a two-dimensional potential well, could be formed on a surface.
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1.2.2 Mean Value of the x-component of the Momentum

We will not derive this; we will only recall what you should already know:

p̄x(t) =

∫
ψ∗(r⃗, t) p̂x ψ(r⃗, t) d3r (3)

where
p̂x = − ih̄ ∂

∂x
(4)

and we would analogously write it for p̂y a p̂z .

1.2.3 Position Operator, Momentum Operator and Other Operators

We can now indicate what the 2nd postulate will be about: in QM, every physical quantity F has a corresponding
operator, which we denote by the symbol F̂ , such that

F̄ (t) =

∫
ψ∗(r⃗, t) F̂ ψ(r⃗, t) d3r

We will make this postulate more accurate later. To be able to do so, we first have to examine propeties of operators
being used in QM. We now define several further QM oparators on the basis of the correspondence with classical
mechanics.

ˆ⃗p = e⃗xp̂x + e⃗yp̂y + e⃗zp̂z = − ih̄
(
e⃗x

∂

∂x
+ e⃗y

∂

∂y
+ e⃗z

∂

∂z

)
(5)

Therefore
ˆ⃗p = − ih̄∇⃗ (6)

The angular momentum operator:
ˆ⃗
L = ˆ⃗r × ˆ⃗p = − ih̄ ˆ⃗r × ∇⃗ (7)

The kinetic energy operator:

T̂ =
ˆ⃗p . ˆ⃗p

2m
= − h̄2

2m
∇⃗ . ∇⃗ ≡ − h̄2

2m
∆ (8)

The operator of the potential energy of a point charge q in an external electric field with the intensity E⃗(r⃗) =
− gradU(r⃗):

V̂ (r⃗) = q U(r⃗) (9)

It is a simple operator in the sense that it is expressed by a usual number; e.g., there is no derivative int its expression.
For instance, assuming a coulombic field generated by a (fixed in space) charge Q, we have U(r⃗) = Q/(4πε0r).

1.2.4 Properties of the Operators Used inQuantum Mechanics [1, 2, 3, 4]

Definition 1: LetD1 andD2 be two sets of functions (not necessarily different). By the operator Â is called a prescription
(rule) that assigns a function g ∈ D2 to each function f ∈ D1, which we write symbolically g = Âf .

Definition 2: An operator Â defined on a set D is called linear if

Â(c1f1 + c2f2) = c1Âf1 + c2Âf2 , ∀f1, f2 ∈ D , ∀c1, c2 ∈ C (10)

Definition 3: Given is an Â. If there exists such an operator Â† that the equality∫
f ∗Â f dτ =

∫
(Â†f)∗f dτ pre ∀f ∈ D (11)

holds, then the operator Â† is called Hermitian-conjugate to the operator Â.
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Definition 4: If Â† = Â, then we say that Â is a hermitian operator.2

Example 1: The operator of multiplication by a complex constant: Â = c .∫ ∞

−∞
f ∗c f dx =

∫ ∞

−∞
(c∗f)∗f dx

From this we see that c† = c∗ ̸= c . It means that multiplication by a complex constant is not a hermitian operator
in general. It might be only in the case of zero imaginary part of c.

Example 2:The operator of the derivative with respect to a coordinate: Â =
∂

∂x
. We assume that it operates on a set

of functions such that the integrals written bellow exist and the function f goes to zero for x→ ±∞. Subsequently,
with the aid of integration by parts, we prove that∫ ∞

−∞
f ∗ ∂

∂x
f dx =

∫ ∞

−∞

(
−∂f
∂x

)∗

f dx

Therefore (
∂

∂x

)†

= − ∂

∂x

meaning that the derivative operator is not a hermitian one too.

Example 3: Operator x̂ = x (i.e., multiplication by a coordinate, which is a real quantity). Using the precedure as in
Example 1 we see that at last we have a hermitian operator:

x̂† = x̂

Example 4: Operator p̂x = − ih̄ ∂
∂x

. Using a procedure similar as in Example 2 we find out that

p̂†x = p̂x

that is, the operator of the x-component of the momentum is hermitian (although it contains the derivative; it,
however, includes also i). We will see that this is not an accidence and it has a deeper and wider meaning.

Theorem 1: A physical quantity F has in each (quantum) state a real mean value if and only if it is
evaluated as an expectation value from some hermitian operator (which we denote as F̂ ).

Remark: Even if in this theorem we mention a “physical quantity” and “quantum state”, it is a purely mathematical
theorem (with its consequences for physics).
Proof:
(A) Let F̄ = (F̄ )∗. Using this assumption, we should prove that F̂ = F̂ †. Of course, we have to suppose that the
operator F̂ † exists; otherwise there would be nothing to prove. We have

F̄ =

∫
ψ∗F̂ψ dτ =

∫
(F̂ †ψ)∗ψ dτ

as well as
F̄ ∗ =

(∫
ψ∗F̂ψ dτ

)∗

=

∫
(F̂ψ)∗ψ dτ

Because F̄ = (F̄ )∗, the equality ∫
(F̂ †ψ)∗ψ dτ =

∫
(F̂ψ)∗ψ dτ

2In English-written literature, both hermitian and hermitean adjectives can be found. The first of them is much more frequent but in
the book [3] the second variant is used.
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must hold for any function ψ from the set under consideration. The last equality can only be fulfilled if F̂ = F̂ †

what was to be proved.
(B) It now remains to conduct the proof in the reverse direction: startin from the assumption F̂ = F̂ †, we have to
prove that F̄ = (F̄ )∗. It is similarly simple and you can try it as a homework.

Since any physical quantity can acquire real values only, the theorem just proven implies that the respective
operator in QM has to be a hermitian operator.

Theorem 2: Let there be a Hermitian-conjugate operator Â† to the operator Â. Let A be a linear
operator. Then for all f1, f2 ∈ D the following equality holds:∫

f ∗1 Âf2 dτ =

∫
(Â†f1)

∗f2 dτ (12)

This statement also applies in the opposite direction.

Proof: It can be looked at in books [2, 3, 4] (but you do not need to know it on the exam).
The equation in the last theorem can be written more transparently(∫

f ∗
1 Âf2 dτ

)∗

=

∫
f ∗
2 Â

†f1 dτ (13)

We will go through further definitions and theorems briefly; more detailed wording and the proof can be found in
the literature [2, 3, 4].

Definition 5: (Product of operators.) By the product of two operators we understand the operator Ĉ = B̂Â such
that

Ĉf = B̂(Âf)

Theorem 3: If Ĉ = B̂Â and if hermitian-conjugate operators to Â and B̂ exist, then

Ĉ
†
= Â†B̂†

Proof: We have done it as an exercise using Theorem 2.

Definition 6: The expression
[Â, B̂] ≡ ÂB̂ − B̂Â

is called the commutator of the operators Â, B̂.
In the subject Quantum Mechanics, you have learnt that, for instance,

[x̂, p̂x] = ih̄

1.2.5 Eigenfunctions and Eigenvalues of Operators

Assume we have an operator Â (it need not be hermitian). If its action on a function f generates the same
function, or at most multiplied by a constant, such a function is called an eigenfunction of the operator Â:

Âfa = afa

a is the respective eigenvalue of the operator; we attached the index a to the function to highlight its association
with the eigenvalue a.
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The set of all eigenvalues of an operator is called the spectrum of the operator. An operator can have many
eigenfunctions and eigenvalues. If the set of the eigenvalues is countable, the operator a discrete spectrum. If it is
not countable, the operator has a continuous spectrum. For instance, the equation

p̂x exp
(

i
h̄
ax

)
= a exp

(
i
h̄
ax

)
hold for the operator p̂x for any real a. Therefore, the eigenvalues of the operator p̂x are all real numbers, i.e. it has
a continuous spectrum.

The operator of the x-coordinate also has a continuous spectrum:

x̂f = xf

On the other hand, many operators have discrete spectra, for example the operator L̂z and others. And there are
also operators that have mixed spectra: a part is discrete, other part of is continuous. This is the case of the hydrogen
atom Hamiltonian and also of many other very important operators.

To keep the notation and mathematical apparatus simple, we will formulate some parts of the quantum theory
apparatus only for operators having discrete spectra. In cases of continuos and mixed spectra, procedures would in
some cases be similar; it is sufficient to imagine the associated “index” acquires values from a continuous set or from
a set that is continuous by parts. Continuous spectra, however, bring also non-trivial complications, for example
impossibility to normalise eigenfunctions; for instance, an attempt to determine a norm of an eigenfunction of the
momentum operator will fail: ∫ ∞

−∞

∣∣∣∣exp( i
h̄
ax

)∣∣∣∣2 dx→ ∞

that is, the integral does not exist.

Theorem 4: Eigevalues of a hermitian operator that correspond to normalisable eigenfunctions are
real numbers [2].

Proof: Directly follows from Theorem 1. It can also be found in the cited books.

Often there are several eigenfunctions for one eigenvalue:

Âfj,α = Λjfj,α , α ∈ {1, 2, . . . , g}

Then we say that the operator has a degenerate spectrum or that the eigenvalue is degenerate (if g = 2, then doubly,
if g = 3, then triply, etc).

Theorem 5: Eigenfunctions corresponding to different eigenvalues of a hermitian operator are mutu-
ally orthogonal [2, 3, 4].

Remark 1: That means that
∫
f ∗
mfn dτ ∝ δmn hold. If the eigenfunctions are normalisable, i.e. if the corresponding

integrations converge, then we usually normalise the eigenfunctions so that
∫
f ∗
mfn dτ = δmn .

Remark 2: The theorem does not imply orthogonality of linearly-independent eigenfunctions fn,j corresponding to
the same eigenvalue (i.e. to a degenerate one).
Proof: Can be found in the cited books.

1.2.6 Formulation of the Second Postulate ofQuantum Mechanics

In quantum mechanics, every physical quantity F has a linear hermitian operator F̂ associated
to it such that the mean value (the expectation value) of F (at time t) in a state described by a
wavefunction ψ(r⃗, t) is given by

F̄ (t) =

∫
ψ∗(r⃗, t)F̂ ψ(r⃗, t) d3r (14)
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The physical quantity F can only take values that are eigenvalues of the operator F̂ .
The relations

x̂ = x , p̂x = −ih̄ ∂

∂x
are assumed (postulated) as well as analogous ones for y and z components. Operators of remaining
physical quantities, that have classical analogues, are determined according to the expressions in
classical physics (here mechanics) using the components of coordinates and momenta.
Remark 1: The property that F can only acquire the values that are eigenvalues of the respective operator, must
be understood in the sense that each individual measurement of the quantity on a particular quantum-mechanical
system can only give some of the eigenvalues of F̂ as a result. The average value can, of course, be different. It goes
in the same way as in the case of the bag with the coins (sec.1.2.1): Each time we reach into a bag for a random
one coin, we will necessarily select only the monetary value that is minted on the coins, e.g. 50 cents (which in
our comparison corresponds to one of the eigenvalues). But when we make an average of many pulls, the average
financial value can be e.g. 73 cents, a value that no single coin has. Additional related supporting argumentation for
the 2nd postulate is provided in Appendix A.1. The argumentation can be found in the literature as well, for instance
in [2].
Remark 2: In a case of a many-particle system, there would be integrations over coordinates of the additional
particles of the system in (14).

1.3 TheThird Postulate ofQuantum Mechanics

If a state described by a wave function ψ1(r⃗, t) exists as well as a state described by ψ2(r⃗, t), then
the state

ψ(r⃗, t) = c1ψ1(r⃗, t) + c2ψ2(r⃗, t) , c1, c2 ∈ C (15)
is also possible in priciple. This postulate is called the superposition principle. Whether this or that superpos-
ition state is experimentally achievable, however, is a different matter. The postulate should be understood that in
a theory we can work with any such superposition states.

1.4 The Fourth Postulate ofQuantum Mechanics

According to the 2nd postulate of QM, we know how to construct the operator of the energy of a particle in an
external field. We call it Hamilton’s operator, in short Hamiltonian. If the particle is in an external field with the
potential energy V (r⃗, t), then its Hamiltonian is

Ĥ = − h̄2

2m
∆+ V (r⃗, t) (16)

Thus, the potential energy may be time-dependent. A typical situation of this kind is an atom placed in the field
of an electrmagnetic (EM) wave. As some other example, we have had the time-independent potential energy
V (r⃗) = qU(r⃗), pozri (9). The fourth postulate of QM says:

The equation of motion for the wave function of a state is the Schrödinger equation.

ih̄ ∂
∂t
ψ(r⃗, t) = Ĥψ(r⃗, t) (17)

where Ĥ is the Hamiltonian of the given quantum-mechanical system.

It means that if we know a state wave function ψ(r⃗, t0) (at certain time t0), then, by solving the Schrödinger equation
(SchE), we are able to determine the state wave function ψ(r⃗, t) at any later time t.

It is easy to convince that the SchE is consistent with the superpositon principle: If wave functions ψ1(r⃗, t) and
ψ2(r⃗, t) are solutions to the SchE, then also any linear combination of them is a solution [see also (15)].
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2 Stationary states (a brief reminder)

Consider a physical system with a time-independent Hamiltonian Ĥ . Let un(r⃗) be some of its eigenfunctions
and En its respective eigenvalue, that is the eigenenergy:

Ĥun(r⃗) = Enun(r⃗) (18)

Suppose we prepare the QM system at time t = 0 in this very state:

ψ(r⃗, 0) = un(r⃗)

How the state of the system will evolve in time? By substituting into the time-dependent SchE (17), we can easily
make sure that the function

ψ(r⃗, t) = un(r⃗) exp
(
− i
h̄
Ent

)
(19)

is solution of the equation. It means that up to a periodically oscillating phase factor exp
(
− i

h̄
Ent
)
(the absolute

value of which does not change) is the state always the same: un(r⃗). Therefore, eigenstates of a Hamiltonian of
given physical system are called statioanry states. Their time evolution just described is called free time evolution.

Equation (18) is often called the time-independent Schrödinger equation or the stationary SchE.

3 (Non)-commuting operators and the uncertainty relation

We have learnt that in QM, operators are assigned to classical quantities such as the position vector or mo-
mentum, (the correspondence principle). Numerical values of the quantities in QM are obtained using averaging,
for instance

x̄ =

∫ ∞

−∞
ψ∗(x) x̂ ψ(x) dx , p̄x =

∫ ∞

−∞
ψ∗(x) p̂x ψ(x) dx (20)

While the numbers commute among themselves when multiplied, it may not be the case with operators:

x̂p̂x − p̂xx̂ = ih̄

We know the notion of a commutator : e.g. [x̂, p̂x] = ih̄. We have also learnt that eigenfunctions and eigenvalues
of the operators (those that correspond to physical quantities) are important in QM because experimental measure-
ments of some quantity can only yield one of the eigenvalues of the corrsponding operator as a result. For example,
we have the operator and equation

Ĥψn(x) = Enψn(x)

for eigenenergies of some given system. In the following subsection, we will discuss commuting operators. In
another subsection, we will briefly discuss non-commuting operators.

3.1 Common Eigenfunctions of Commuting Operators

The goal of this section is to prove (at least partially) a very important statement saying that commuting op-
erators have common eigenfunctions (not eigenvalues). We will use this property, for example, in our search for
the eigenfunctions of the hydrogen-atom and like ions Hamilton operator. We will demonstrate the proof of the
statement at least for the case of the simple situation of non-degenarate spectra of the operators. at least

The Case of Non-degenerate Spectra

Theorem 6: Assume that operators Â and B̂ commute and both have non-degenerate spectra. Then
any eigenfunction of A is also an eigenfunction to (of) B and vice versa (i.e. any eigenfunction of B
is also an eigenfunction to A).
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Proof: Let Af = af . Act with the operator B from the left side:

B(Af) = B(af) ; komutujú ⇒ A(Bf) = a(Bf)

It means that the function
Bf ≡ f ′ (21)

is also an eigenfunctions of the operator A,
Af ′ = af ′

and it even corresponds to the same eigenvalue as the function f . Because the operator A has, according to the
assumption, a non-degenerate spectrum , f ′ can differ from f at most trivially, i.e. by an unessential constant
multiple:

f ′ = cf (22)

Thus, f and f ′ are essentally the same eigenfunctions of the operator A. By combining equations (21) and (22), we
obtain

Bf = cf

meaning that the function f is an eigenfunction of the operator B as well, what was to be proved.

Remark: Thus, commuting operators have common eigenfunctions, not eigenvalues.

The Case of Degenerate Spectra

We should now prove an analogue of the above theorem for the general case, i.e. the case when Â and B̂ may
have degenerate spectra.

Theorem 7: If operators Â and B̂ commute, then it is possible to construct a complete set of their
eigenfunctions such that they are common to both these operators. There is also the statement valid in
the reverse direction: It operators Â and B̂ have common eigenfunctions and if these eigenfunctions
form a complete system, then the operators Â and B̂ commute. [2, 3].

The proof is not difficult to understand. It is onlymore lenghty and it uses some knowledge from algebra. Essentially,
it is done by constructings the common eigenfunctions. We will not do it but we will keep in mind the content of
the theorem.

3.2 The Uncertainty Relation

We just recall what you should know from the course of Quantum Mechanics.

Let F and G be physical quantities with operators F̂ and Ĝ. In case that the commutator of F̂ and Ĝ is non-zero, the
two quantities are incompatible, i.e. we cannot measure them at the same time with arbitrary precisions.

Briefly, if [F̂ , Ĝ] ̸= 0 then F and G cannot both be determined accurately. There will be some uncertainty in F or
in G or (most likely) in both.

For example,
∆x∆px ≥ h̄

2
(23)

This is a principal equality which can be derived with the help of considerations about wave packets, or using a
more formal and more general approach [2, 3]. Therefore, the uncertainty relation (23) cannot be understood in
terms of some imperfection of experimental apparatus, but as a fundamental property of particles. This property
cannot, of course, be noticed on some relatively heavy particles of matter, such as e.g. a grain of sand, but for very
light particles of the microworld, such as e.g. electron, this uncertainty is significant.
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If two operators switch, such as p̂x and p̂y, commute, then in principle it is possible to measure the corresponding
quantities with arbitrary precision, i.e. with zero uncertainties (if we disregard the imperfections of measuring
instruments). Also formally, the inequality

∆px ∆py ≥ 0 (24)
can be derived for such (commuting) operators [2, 3]. Obviosly, it does not put any bound on the (always non-
negative, of course) uncertainties ∆px, ∆py.

4 Angular Momentum inQuantum Mechanics

Angular momentum (AM) is an important quantity already in classical mechanics. It is such because it belongs
to the integrals of motion, which are the quantities not changing their value (while the system is a closed, i.e. an
isolated one). Integrals, i.e. constans of motion (in classical mechanics) are the total mechanical energy of a system,
its total momentum and the total angular momentum. As we will see, in QM the AM is even a more important
quantity, so it is worth dealing with it. Knowledge about the AM will be a springboard to the study of motion of a
particle in a spherically symmetric field – hydrogen atom for example. In the next chapter we will wish to determine
eigenfunctions of Hamiltonian of such a particle. For the sake of motivation, let us go a little ahead of the exposition
and say that the Hamiltonian for a spherically symmetric field commutes with the operators describing the angular
momentum. Therefore, if we find proper eigenfunctions for, e.g. the operator of the quadrat of the AM, then they
might also be eigenfunctions for the particle in the spherically symmetri field.

4.1 Definitions and Basic Commutation Relations

Angular momentum of a single classical particle is

L⃗ = r⃗ × p⃗ (25)

According to the correspondence principle, we then construct the corresponding quantum-mechanical operator
ˆ⃗
L = ˆ⃗r × ˆ⃗p (26)

Its cartesian components are (we will write the z one in detail)

L̂x = ŷp̂z − ẑp̂y , L̂y = ẑp̂x − x̂p̂z , L̂z = x̂p̂y − ŷp̂x = − ih̄
(
x
∂

∂y
− y

∂

∂x

)
(27)

They are all hermitian operators, which is easy to ascertain based on Theorem 3 and the relations like [ŷ, p̂z] = 0.
As an exercise we show that L̂x, L̂y, L̂z do not commute and that their commutators are

[L̂x, L̂y] = ih̄L̂z , [L̂y, L̂z] = ih̄L̂x , [L̂z, L̂x] = ih̄L̂y (28)

A physical consequence, according to the uncertainty principle, then is impossibility to know values of two cartesian
components of the AM precisely at once. A mathematical consequence according to Theorem 7 formulated above is
impossibility to find a complete system of common eigenfunctions for a pair of operators, say for L̂x and L̂y; such
a system does not exist. Regarding the AM, its magnitude is, however, of interest. In classical mechanics we would
calculate a value L ≡ |L⃗|. In QM it turn out to be more practicle to calculate the square of the magnite of the AM.
Let us thus introduce the operator of the square of the angular momentum:

L̂2 = L̂2
x + L̂2

y + L̂2
z (29)

And let us explore its commutation properties. As an exercise we prove that

[L̂2, L̂x] = [L̂2, L̂y] = [L̂2, L̂z] = 0 (30)

For the pair of operators L̂2, L̂x a complete system of common eigenfunctions thus exists. And so for the pairs
L̂2, L̂y a L̂2, L̂z . We will be seeking them; it will be sufficient to do for L̂2, L̂z . Later, they will prove very important
in the search of stationary states (eigenstates) of the hydrogen atom and so on. We will also find the corresponding
eigenvalues which will tell us what can be possible values of, for instance, L̄z or L̄2.
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4.2 Spherical Coordinates

We will see that it is often easier to work with the AM operators and corresponding eigenfunctions if they are
expresses using spherical coordinates ϑ, φ, r. Let us recall the transformations formulas:

x = r sinϑ cosφ (31a)
y = r sinϑ sinφ (31b)
z = r cosϑ (31c)

ϑ = arccos
(

z√
x2 + y2 + z2

)
(32a)

φ = atan2 (y, x) (32b)

r =
√
x2 + y2 + z2 (32c)

4.3 Eigenfunctions and Eigenvalues of the L̂z Operator

Let us take any differentiable function f = f(r⃗) and try to express its derivative with respect to φ:

∂f

∂φ
=
∂f

∂x

∂x

∂φ︸︷︷︸
−y

+
∂f

∂y

∂y

∂φ︸︷︷︸
x

+
∂f

∂z

∂z

∂φ︸︷︷︸
0

According to (27) we have

L̂z = − ih̄ ∂

∂φ
(33)

The equation for the eigenfunctions and eigenvalues (eigensystem) of the operator L̂z is written as

L̂zΦa(φ) = aΦa(φ) (34)

where according to Theorem 4 a has to be a real number. By substituting for L̂z , the differential equation (DE)

dΦa

dφ +
a

ih̄Φa = 0 (35)

is formed. The solution of this equation (found in the exercise) is

Φa(φ) = c exp
(

i
h̄
aφ

)
(36)

where c is an arbitrary complex constant. We can easily be convinced of this solution by substitution. Given the
geometric meaning of the φ angle, we will require the condition

Φa(φ+ 2π) = Φa(φ) (37)

By using it we get

exp
(

i
h̄
a2π

)
= 1

From this a = mh̄, wherem ∈ Z. So we see that the z component of the AM can only take on values that are integer
multiplies of h̄. The same is of course true also for the x and y components. (These axes are mutually equivalent to
the z one by their nature; it is sufficient to rename the axes and we get x from z, for example.) As it is seen as well,
the eigenvalues of the L̂x, L̂y, and L̂z operators are non-degenerate.

We usually choose the value of the constant c by convention so that the normalisation∫ 2π

0

Φ∗Φ dφ = 1 (38)
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is satisfied, which gives (if we want c to be a real and positive constant) c = 1/
√
2π. Let us summarise:

L̂zΦm(φ) = mh̄Φm(φ) , where Φm(φ) =
1√
2π

e imφ , m ∈ Z (39)

The eigenvalues of the operator L̂z are thus non-degenerate. We can also easily see that the corresponding functions
are – as it should be also according to Theorem 5 – orthogonal to each other (verified in the exercise):∫ 2π

0

Φ∗
m(φ) Φm′(φ) dφ = δmm′ (40)

Approaching the end of this section, it is suitable to say that if we already have found expression (39) for the eigen-
functions of L̂z , then it is easy, with the help of the Euler formula and the relations (31a), (31b), (31c) between sperical
and cartesian coordnates, to reexpress the expression in cartesian coordinates (derivation done in the exercise):

Φm(φ) ≡ f (z)
m (x, y) =

1√
2π

(
x+ iy
x− iy

)m/2

(41)

The expressions for the eigenfunctions of L̂x a L̂y in terms of cartesian coordinates can now be immediatelly obtained
by the cyclic permutation of the coordinates in (41). L̂x

There is no such symmetry or equivalence within the three spherical coordinates as it is within the cartesian
ones. Therefore the eigenfunctions of the operators L̂x and L̂y in spherical coordinates will not have expressions
of the same form as in the case of the operator L̂z It would however be easy to find expressions for the operators
L̂x and L̂y in spherical coordinates since we know, from the exercise, their expressions of the kind (41) in cartesian
coordinates.

4.4 Common Eigenfunctions of Operators L̂z a L̂2 (Part 1). Separation of Variables in Spher-
ical Coordinates

Finding eigenfunctions is related to finding of eigenvalues and therefore it will be helpful for us to determine
what can in QM be magnitude of the angular momentum (or its square). In this section, however, we will only
suggest one procedure, a basic one, based on solving a partial differential equation, a bit ”heavy-footed” compared
to another method and at the same time less general.

We will use the commutation
[L̂2, L̂z] = 0 (42)

from which, according to either Theorem 6 or Theorem 7 implies that the two operators have common eigenfunc-
tions. So first let us see if the functions exp( imφ), which are the eigenfunctions of L̂z , happen to be eigenfunctions
for L̂2 as well. The expression

L̂2 = −h̄2
[

1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2

]
= −h̄2∇2

ϑ,φ (43)

for the operator L̂2 in spherical coordinates (will be explained in exercises) will serve us in this. Let us note that
there is no r in this expression. L̂2, however, depends also on the spherical angle ϑ and so its eigenfunctions will
in general depend on this angle as well. Therfore the simple functions exp( imφ) (depending on φ only) will not be
eigenfunctions of L̂2. But how to understand this knowing the fact that the operators L̂2 and L̂z commute? The only
possible explanations (with respect to Theorem 6) is that L̂2 has a degenerate spectrum (and we will convince
ourselves in detail that it is so). But, on the other hand, we have proved that any eigenfunction of L̂z must contain
the factor exp( imφ). So the eigenfunctions of L̂z such that they are at the same time also eigenfunctions of L̂2, must
take the form

K(r, ϑ) e imφ (44)

where K(r, ϑ) is a function of its two variables. Let us notice that the expression (44) is an eigenfunction of the
operator L̂z for arbitrary chosen functionK(r, ϑ). We can easily be convinced of this by substituting (44) into (34).
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And also note that the dependence on r in (44) is not necessary, because r is not found neither in the expression for
L̂z nor in L̂2. The angle ϑ must, however, in general be there, since it enters the operator L̂2. The equation

L̂2Y m
l (ϑ, φ) = λlmY

m
l (ϑ, φ) (45)

must therefore be solved, together with the already partially solved equation

L̂zY
m
l (ϑ, φ) = h̄mY m

l (ϑ, φ) (46)

for the (at this point) unknown common eigenfunctions for which we however know, using formula (44), that it
must be possible to express them in the separated form3

Y m
l (ϑ, φ) = Θm

l (ϑ) Φm(φ) (47)

To prevent a misinterpretation: m in Y m
l and in Θm

l is not and exponent but a superscript. λlm are still completely
unknown eigevalues; we only know that thay must be real. We understand the index m; it is associated with the
variable φ. We do not specify the index l yet, but since we have the new variable ϑ, an index associated with it will
apparently be needed. So let the l is the index and is has to be written at the function Θ. We have written also the
indexm to it; we do not know yet if it will be needed, i.e. if Θ will depend onm (it will). Even if it was not needed,
we would not do anything wrong by writing it there.

As can be easily convinced, and we have already indicated it in between (44) and (45), the form (47) could
be made more complicated by multiplying it by an arbitrary r-dependent function and such a form would still
present a common eigenfunction of the operators L̂2 and L̂z (because the variable r is just a constant for these
operators; they contain neither derivatives with respect to r nor r itself). Such a multiplication by an arbitrary
r-dependent function would be just an unnecessary complication for now; we are now trying to find the simplest
possible common eigenfunctions of the operators L̂2 and L̂z . Therefore, have omitted the function K(r, ϑ), which
depends also on the variable r, and replaced it by the function Θm

l (ϑ), which depends on the only necessary spatial
variable ϑ.

The solutions (eigenfunctions) of the form (47) are products of two functions, one of which only depends on the
variable ϑ and the other on φ only. It is therefore a factorised form of the solution. The variables are separated in
it. Therefore, we talk about separation of the variables.

After substituting the form (47) into eq. (45), we get a differential equation (DE)

we do not even write it (48)

We should now solve the equation to getΘm
l and then the eigenfunctions of the operator L̂2 we are looking for. Such

a straightforward approach is especially suitable when meeting QM for the first time; it employs solving the DE
with the aid of the mathematical analysis aparatus and is rather lengthy. In this course we will better demonstrate
an elegant and much more general akgebraic approach how to determine the eigenvalues λlm of the operator L̂2.
In doing this we will also see that they will not depend on the index m which means they will be degenerate
[because the operator L̂2 will in general have more eigenfunctions Y m

l (ϑ, φ) for a single eigenvalue λl]. In the
above consideration using Theorems 6 and 7, we have already proved the fact that the eigenvalues will be in some
way degenerate. In next section we will in a more general way demonstrate, how precisely the are degenerate.

4.5 Eigenvalues of the Angular Momenta Operators

It turns out that commutation relations of the form (28) apply not on for the orbital angular momentum,4 but
also for all other angular momenta, for example spin. Therefore, in QM we distinguish what kind of AM it is: for
example the operator (26) is the orbital AM operator. Spin of a particle is associated with an (unspecified) operator

3In some literature, for instance in [2], a notation Ylm is being used for these functions. However, most of today’s sources and literature
use the notation Y m

l , while the symbol Ylm is reserved for closely related so-called real spherical harmonics, which in their essence are
the real and imaginary components of the functions Y m

l .
4The orbital AM is the usual AM, which is in classical physics calculated as r⃗ × p⃗ and in quantum physics with the use of the oparator

ˆ⃗r × ˆ⃗p.
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of spin AM. Sum of the orbital and spin AM is the total AM and it has its operator as well. We are not going to deal
with this now. However, we will perform the following analysis by assuming the validity of commutation relations
of the kind (28) and we will derive consequences almost purely from this assumption. Instead of symbols such as L̂x,
we will use notations Ĵx, Ĵy, Ĵz to emphasize that it does not have to be just an orbital AM. These three operators
will therefore form a vector operator ˆ⃗

J . For simplicity, we will consider it dimensionless. We make this by choosing
h̄ = 1 (or by omitting h̄). In many literature, if possible, the Planck constant h̄ is also set equal to 1 and is not even
written.

Commutation Relations. Let us therefore consider linear hermitian operators for which commutation relations [2,
3]

[Ĵx, Ĵy] = i Ĵz , [Ĵy, Ĵz] = i Ĵx , [Ĵz, Ĵx] = i Ĵy (49)

apply. These relationships are often taken as the definition of what we consider in QM to be the angular momentum.
Let us define an operator

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z (50)

Exactly as we had above [see (30)], it can be proved here purely on the basis of relations (49) that (done as an exercise)

[Ĵ2, Ĵx] = [Ĵ2, Ĵy] = [Ĵ2, Ĵz] = 0 (51)

This, according toTheorem 7, means that the eigenfunctions of the operators Ĵz , Ĵ2 can be constructed to be common
to both of these operators. However, our task now will be to find eigenvalues of Ĵz and Ĵ2 in particular and to learn
something about the mentioned eigenfunctions. However, instead of the eigenfunctions labeled as Y m

l , we will use
a more generally applicable notation |j,m⟩ and we will call this abstract symbol an eigenvector. For now let us just
take it as a notation [2, 3]. So we have to solve the double task [compare to the pair of equations (45) and (46)]

Ĵ2|j,m⟩ = ηj|j,m⟩
Ĵz|j,m⟩ = m|j,m⟩

(52)
(53)

We do not assume anything about the value of m yet, we just know that it should be real because of the hermicity
assumed above. The same for ηj . We take the index j for a more general analogue of the index l from section 4.4
about the orbital angular momentum. By the notation introduced in equations (52) and (53) we already anticipate
(insipred by the knowledge acquired earlier) that the eigenvalues ηj of the operator Ĵ2 will not depend on m.
However, we will verify this guessed property by a derivation; therefore, it will not stay guessed. The independence
of the eigenvalues ηj of the operator Ĵ2 on m is on a more general level the same property as is the independence
of the eigenvalues λlm of the operator L̂2 onm. Although without a proof but still with a sufficient motivation, we
have already mentioned the latter independence at the end of section 4.4. The independence of ηj onm means that
the eigenvalues of the operator Ĵ2 (hence also of L̂2) will be degenerate. In solving given task we will really prove
it and we opt to use the simple symbol ηj (i.e. without m) already from the start because it is a practical notation
and there will be no need to change it later.

Raising and Lowering Operators. Let us now define the pair of operators (for the sake of simple notation we start
to omit the hats)

J+ = Jx + iJy , J− = Jx − iJy (54)

Obviously, they are not hermitian operators but it is not a problem. It is useful to know their commuation properties,
for example immediately found relations

[J2, J+] = [J2, J−] = 0 (55)

as well as further ones which we know from exercise:5

[Jz, J+] = J+ , [Jz, J−] = −J− , [J+, J−] = 2Jz (56)
5It is easy to show using (54) and (49). For instance, [Jz, J+] = [Jz, Jx + iJy] = iJy + i(− i)Jx = Jx + iJy = J+.
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As we will see, the followng additional identities will also be needed (proved in exercise)6

J+J− = J2 − J2
z + Jz (57a)

J−J+ = J2 − J2
z − Jz (57b)

Let us now explore the action of the operators J± on the unknown eigenvectors |j,m⟩.

J+|j,m⟩ def
= |j,m⟩+ , J−|j,m⟩ def

= |j,m⟩− (58)

Let us at first try (and calculate) this:

J2|j,m⟩+ = J2J+|j,m⟩ = J+J
2|j,m⟩ = J+ηj|j,m⟩ = ηj|j,m⟩+

And analogously
J2|j,m⟩− = = ηj|j,m⟩−

Thus, the vectors |j,m⟩+ and |j,m⟩− are also eigenvectors of the operators J2, with
the eigenvalue in both cases being the same ηj as is for the eigenvecor |j,m⟩.

(59)

Examine also the operation

Jz|j,m⟩+ = JzJ+|j,m⟩ = (J+ + J+Jz)|j,m⟩ = |j,m⟩+ + J+m|j,m⟩ =

= (1 +m)|j,m⟩+

and analogously also

Jz|j,m⟩− = (−1 +m)|j,m⟩−

Thus, the vectors |j,m⟩± are also eigenvectors of the operator Jz , with eigenvalues beingm± 1. (60)

We already see from the above said, that the operator J2 has a degenerate spectrum, because, e.g., the three
different eigenvectors |j,m⟩−, |j,m⟩ a |j,m⟩+ correspond to the same eigenvalue ηj . What regards to Jz , let us
assume non-degeneracy of its spectrum. We have a good motivation for this as its particular example, Lz , has the
non-degenerate spectrum. Later we will convince ourselves about the correctness of this assumption also for the
general AM. Based on the two results framed above, it can then be said that |j,m⟩+ is (up to a constant) equal to
|j,m+ 1⟩ and analogously for |j,m⟩−. We write it as follows:

|j,m⟩+ ≡ J+|j,m⟩ = C
(+)
jm |j,m+ 1⟩ (61a)

|j,m⟩− ≡ J−|j,m⟩ = C
(−)
jm |j,m− 1⟩ (61b)

where C(+)
jm a C(−)

jm are as yet unspecified constants. In the notation as for usual functions, we will express this by
equations

Y
(+)
j,m ≡ J+Y

m
j = C

(+)
jm Y m+1

j

Y
(−)
j,m ≡ J−Y

m
j = C

(−)
jm Y m−1

j

The operators J± modify the eigenstates |j,m⟩ by increasing or decreasing the eigenvaluem: for example, by acting
with J+ on state |j,m⟩, we create state |j,m+1⟩ (up to a less significant constant). Therefore, J+ is called the raising
operator and J− the lowering operator.

6This also can be done easily: J+J− = (Jx + iJy)(Jx − iJy) = J2
x + iJyJx − iJxJy + J2

y = J2
x + J2

y + Jz .
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Determination of the Constants C(±)
jm . Let us try to express the square of the norm of the functions Y (+)

j,m , i.e. the
scalar product7

〈
Y

(+)
j,m

∣∣∣Y (+)
j,m

〉
:∫ [
Y

(+)
j,m

]∗
Y

(+)
j,m dτ =

∫ [
C

(+)
jm Y m+1

j

]∗
C

(+)
jm Y m+1

j dτ =
∣∣∣C(+)

jm

∣∣∣2
We assume that the functions Y m

j (also the vectors |j,m⟩) are normalised to 1. The scalar product can also be written
as follows:∫ [

Y
(+)
j,m

]∗
Y

(+)
j,m dτ =

∫ [
J+Y

m
j

]∗
J+Y

m
j dτ =

∫ (
Y m
j

)∗
J†
+J+Y

m
j dτ =

∫ (
Y m
j

)∗
J−J+Y

m
j dτ

We used the fact the the operators J+ and J− are hermitian conjugate to each other (mutually hermitian conjugate)
– it is known from exercises. Preto platí ∣∣∣C(+)

jm

∣∣∣2 = ∫ (Y m
j

)∗
J−J+Y

m
j dτ

In the abstract formalism of Dirac bra and ket vectors using the vectors |j,m⟩we write it as follows (and let us write
it also for the C(−)

jm , what we would derive quite analogously):∣∣∣C(+)
jm

∣∣∣2 = ⟨j,m|J−J+|j,m⟩ ,
∣∣∣C(−)

jm

∣∣∣2 = ⟨j,m|J+J−|j,m⟩ (62)

From the exercise we know the operator identities (57a) and (57b). Using them we get∣∣∣C(+)
jm

∣∣∣2 = ⟨j,m|J2|j,m⟩ − ⟨j,m|J2
z |j,m⟩ − ⟨j,m|Jz|j,m⟩ = ηj −m2 −m∣∣∣C(−)

jm

∣∣∣2 = = ηj −m2 +m

Thus, we find that relations ∣∣∣C(+)
jm

∣∣∣2 = ηj −m(m+ 1) (63a)∣∣∣C(−)
jm

∣∣∣2 = ηj −m(m− 1) (63b)

apply. Their left-hand sides clearly say that the expressions must be non-negative. Thus (∧ – and, i.e. the conjunct)

ηj ≥ m(m+ 1) ∧ ηj ≥ m(m− 1) , ∀m (64)

This implies limitations onm at given ηj ; the values ofm must be bounded from above and below.

Upper Limit. Generically, however, equation

J+|j,m⟩ = C
(+)
jm |j,m+ 1⟩

applies [see (61a)], which would “want” to increment m without termination. To terminate this climb, C(+)
j,mmax has

to be 0 for certain mmax. Eq. (63a) then implies that ηj = mmax(mmax + 1). Note that now we are using the symbol
j only in the meaning of an index, both in the eigenvalues etaj and in the eigenfunctions Y m

j (and in the case of
the abstract notation also in the eigenvectors |j,m⟩). However, we have not yet assigned any value to the j index;
the index itself alone does not enter any formula, that is it is an unused symbol. So let’s start using it instead of the
lengthymmax:

j ≡ mmax (65)
The consequence of eq. (63a) is then written shorter:

ηj = j(j + 1) (66)

From the above exposition, it is reaaly possible to observe [see eq. (63a)] that, if, by subsequent incrementing of the
numberm, we were proceeding higher and higher (from the vector |m⟩ going to |m+1⟩ etc), then this climb would
be stopped since C(+)

jj = 0. at the value ofm = mmax ≡ j

7The scalar product S, called also the dot product, of functions f and g is defined by the expression S =
∫
f∗g dτ , in which the

integration goes over the whole range of the variable τ , in which the functions f and g are defined. In the Diract formalism, the scalar
product is written as S = ⟨f |g⟩. The symbol ⟨f | alone is called bra and |g⟩ is called emphket (from the word brackets).
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Lower Limit. Generically, relation
J−|j,m⟩ = C

(−)
jm |j,m− 1⟩

applies as well [see (61b)], which, on the other hand, would “want” to decrement m without termination. To ter-
minate this steping down, C(−)

j,mmin
has to be 0 for certain mmin. From the second of the inequalities (64) if follows

that
ηj = mmin(mmin − 1) (67)

that is
m2

min −mmin − j(j + 1) = 0

The solutions of this quadratic equation are the roots

mmin ∈ {j + 1,−j}

The second of them is obviosly the one we need. Thus

mmin = −j

In the end, let us recall: just as the vanishing C(+)
j,j stopped us as we went up the “ladder”, so now (when we move

down) we have C(−)
j,−j = 0 instead.

Eigenvalues. Thus, for given ηj (equivalently for given j), the following values ofm are possible:

m ∈ {−j,−j + 1, . . . , j} , i.e. 2j + 1 values

The number of values must definitely be a non-negative integral number (integer), and in this particular case the
number is at least 1. Therefore, 2j is a non-negative integer ; hence j is a non-negative integer or half-integer.
and m are integral numbers or half-integers .

So let us summarize what we have found:

J2|j,m⟩ = j(j + 1) |j,m⟩
Jz|j,m⟩ = m |j,m⟩

(68)

j ∈ {0, 1, 2, . . . }, or j ∈
{
1

2
,
3

2
,
5

2
, . . .

}
, m ∈ {−j,−j + 1, . . . , j}

So, we have determined the eigenvalues of the operators J2 and Jz . We see that the eigenvalues of the operator J2

are degenerate, because for one j we have 2j + 1 of differentm values, and thus so many different eigenvectors.
Thus, by a purely algebraic procedure, we obtained the eigenvalues of the corresponding operators from the

postulated (but at least in the case of the orbital angular momentum justified) commutation relations. While for
the orbital angular momentum we got the integral numbers m as the eigenvalues of Lz , we have derived at least
the mathematical possibility of half-integral ms from relations (49). The question is whether such a mathematical
possibility is realised somewhere in nature. Experiments answer yes. This possibility is realized in the case of the
spin AM of an electron and other fermions. Spin is the internal AM of a particle. Different angular momenta of a
system (in the simplest case of a single particle) add up. Therefore also the resulting (composite, summed up) AM
of an electron has a half-integer z component (and thus also a projection of the AM to any axis since we can choose
the z direction arbitrarily). Let us remind again that each (also a composite) AM in quantum mechanics must obey
the commutation relations of the kind (49). That this is the case is shown in particular by the agreement of the
experiments and the theory built on this assumption.
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Figure 1: A scheme of the common eigenvectors of the operators J2 and Jz for the lowest integer j’s.

Phase Convention. We have not yet found any specific expressions for the eigenvectors |j,m⟩, nor unambiguous
values of the constants C(±)

jm , only the squares of their absolute values. The phase (argument) of these constants
cannot be unambiguously determined; it just needs to be defined. Most often we choose it to have the constants
real and positive. The we get the following formulae expressing the action of the rasing and lowering operators [see
also (61) and (66)]:

J+|j,m⟩ =
√
j(j + 1)−m(m+ 1) |j,m+ 1⟩ ≡

√
(j −m)(j +m+ 1) |j,m+ 1⟩

J−|j,m⟩ =
√
j(j + 1)−m(m− 1) |j,m− 1⟩ ≡

√
(j +m)(j −m+ 1) |j,m− 1⟩

(69a)

(69b)

This phase convention is called the Condon-Shortley convention.
A schematic representation of the spectrum of common eigenvectors of the operators J2 and Jz for some of the

lowest integral values of j is shown in Fig. 1. Within each of the “ladders” we can “move” using the action of the
rasing and lowering operators J±.

4.6 Common Eigenfunctions of Operators L̂z and L̂2 (Part 2)

It is worth remembering that in the general discussion of the AM in the previous section, the numbers j andm
could either be integer or half-integers. The half-interal ones, as it in QM turns out, are important for the spin AM.
Now, however, we resume the interrupted analysis of the orbital AM, which we in the traditional way started in
section 4.4. Wewould complete the traditional approach by solving the partial DE (48) in spherical coordinates
ϑ, φ. Although we only started the traditional approach, we learnt some new things (knowledge). Armed by the
knowledge of the rasing and lowering oparators, we will now complete the analysis of the orbital AM in a different
way.

Instead of the index j, we will be using l for the orbital AM. And what is essential, we have already found out
that we have the integral ms in the case of the orbital AM; see (39). Hence l will also be integers. Instead of the
mathematically demanding and leghty procedure indicated at the end of section (4.4), we are now going to look for
the common eigenfunction of L̂z and L̂2 by exploring the effect of these operators on polynomials in cartesian
coordinates. We know from the exercise that the operator L̂2 can in cartesian coordinates be reexpressed in the
form

L̂2 = (y2 + z2)p̂2x + (z2 + x2)p̂2y + (x2 + y2)p̂2z − 2(xyp̂xp̂y + yzp̂yp̂z + zxp̂zp̂z) + 2 ih̄(xp̂x + yp̂y + zp̂z) (70)
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from which we easily get the final form

L̂2 = h̄2
[
−(y2 + z2)∇2

x − (z2 + x2)∇2
y − (x2 + y2)∇2

z + 2(yz∇2
yz + zx∇2

zx + xy∇2
xy) + 2(x∇x + y∇y + z∇z)

]
(71)

We can see that it contains products of polynomials and partial derivatives and if the derivative is nth, themultiplying
polynomial is of the degree n. This is also the case with the L̂2 operator:

L̂z = − ih̄(x∇y − y∇x) (72)

For brevity we will set h̄ = 1 in calculations of this section. We will do calculations of sections 4.6.1 and 4.6.2 as an
exercise.

4.6.1 Action of L̂z and L̂2 on Polynomials f = ax+ by

It is a homogeneous polynomial of the 1st degree (sometime perhaps called a linear form).

Action of L̂z. Let us thus first try to explore what we get by acting of L̂z on such a polynomial; x and y are
cartesian coordinates, i.e. real quantities. As yet a and b are arbitrary constants.

L̂zf = − i(x∇y − y∇x)(ax+ by) = − i(−ay + bx) = − ibx+ iay

We got a polynomial somehow resembnling the original f . We have to solve (among other things) the problem

L̂zf = λf (73)

with λ being an eigenvalue. We have already solved this task in section 4.3, but the functions found there were eigen-
functions of L̂z only, not of L̂2. Therefore we are now solving the problem again and other way. Upon substituting
of what we got few lines above into equation (73), we get

− ibx+ iay = λax+ λby

This equation has to apply for aby point in space, that is also for any real x and y. So we obtain equalities

− ib = λa , ia = λb

⇒ b = iaλ , ia = iaλ2 (74)

Therefore
if a ̸= 0 then λ2 = 1 (75)

For a ̸= 0 we have thus found eigenvalues λ ∈ {+1,−1} of the operator L̂z and eigenfunctions (in the form of
polynomials)

f = ax+ iλay = a(x+ iλy) = ar sinϑ (cosφ+ iλ sinφ) = ar sinϑ e iλφ (76)
The eigenvalues ±1 really belong to the set of those that we have found for the operator L̂z in section 4.3. We have
there determined the formK exp( iλφ) for the eigenfunctions, withK being anything independent on the angle φ.
And it is really so: the multiplicating factor ar sinϑ does not include φ. What if we had a = 0? Then we would
have b = 0 and would obtain a trivial function identically equal to zero. It is an uninteresting solution as it does not
bring any information.

Action of L̂2. Let us now act on the given polynomial by the operator of the square od the AM, expressed in the
form (71). We easily obtain the results

L̂2f = 2(x∇x + y∇y + z∇z)(ax+ by) = 2ax+ 2by = 2f (77)

We see that this polynomial is an eigenfunction for L̂2 even for arbitrarily chosen a, b. The corresponding eigenvalue
is the number 2. (Writing also h̄, it would be 2h̄2.)
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Preliminary Summary for theHomogeneous Polynomials of the 1st Degree. Of course, if wewant the polynomial
f to be an eigenfunction for both the operators, we have to restrict a and b by the condition (74): b = iaλ. And
let us note that the eigenvalue 2 is just l(l + 1) for l = 1. This l and the eigenvalues λ = ±1 determined few lines
above agree with the result (68) (in which j andm were used instead of l and λ). We can write the equations solved
here and the solutions found now as follows:

L̂2f1,+1 = 2 f1,+1 , L̂2f1,−1 = 2 f1,−1 , L̂zf1,+1 = +1 f1,+1 , L̂zf1,−1 = −1 f1,−1

or, more briefly,
L̂2f1,±1 = 2 f1,±1 , L̂zf1,±1 = ±1 f1,±1 (78)

where
f1,±1 = a(x± iy) = ar sinϑ e± iφ (79)

Instead of flm, we almost could use the already introduced general notation Y m
l according to (47). We will not do it

because the functions flm do not have the proper normalisation constants which are being used for Y m
l ; flm even

include the dependence on the spherical variable r and we know that this one does not have to be there; aiming to
determine as simple common eigenfunctions (of the operators L̂2 and L̂z) as possible, we will remove the r later on.
In doing the derivation, it was more practical to keep r there.

Determination of the Eigenfunction f1,0. We will complete the triplet of the functions f1,m only after f1,0 is
determined as well. We have learnt a little bit above [formulae (69)] that once one of the functions flm is known
(i.e. for one particular m), then, using the effect of the rasing and/or lowering operator, we can determine flm for
all otherms. So, let us use the second of those formulae. We get

f1,0 =
1√
2
L̂−f1,+1 (80)

where f1,+1 is given by the expresion (79). To obtain the results, we need to calculate the effect of L̂− on f1,+1.

L̂−f1,+1 = (Lx − iLy)[a(x+ iy)] = a{[− i(y∇z − z∇y)]− i [− i(z∇x − x∇z)]}(x+ iy) =
= a(− iy∇z + iz∇y − z∇x + x∇z)(x+ iy) = a(−z − z) = −2az

Upon substituting into (80), we obtain

f1,0 = −
√
2 az = −

√
2 ar cosϑ (81)

The Constant a. If one just requires f1,+1, f1,0, f1,−1 to be some common eigenfunctions for L2 a Lz , then the
constant a can be an arbitrary complex number and it does not have to be the same for neither f1,−1, nor
f1,+1, neither f1,0. Each of the three functions can have its own constant: if any eigenfunction is multiplied by any
constant, the function remains to be the eigenfunction. The choice of these constants is a matter a practical con-
venience and normalisation. In our study of the general AM, we have introduced the Condon-Shortley convention
[see (69)]. In the case of the orbital AM which we are studying now, we will choose the constants to be consistent
with the Condon-Shortley convention. For example, using a procedure similar to the above one, i.e. by utilising the
action of the lowering opeerator, we easily find out that

f1,−1 =
1√
2
L−f1,0 = −a(x− iy) = −ar sinϑe− iφ (82)

We see that the f1,−1 determined in this way (i.e. in accordance with the Condon-Shortley convention) has an
opposite sign than f1,−1 determined above [eq. (79)].

4.6.2 Action of L̂z and L̂2 on the Polynomials f = ax2 + by2 + cxy

In a way analogous to the one in section 4.6.1, let us now examine the effect of the operators of the AM on
homogeneous polynomial of the 2nd degree (i.e. on quadratic forms, although the word form may rarely be used in
English). We again choose the forms independent on z, because otherwise they could not be eigenfunctions for L̂z ,
as it is to convince.
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Action of L̂z.

L̂zf = − i(x∇y − y∇x)(ax
2 + by2 + cxy) = − i(−2axy + 2bxy + cx2 − cy2)

L̂zf = λf =⇒ 2 i(a− b)xy − icx2 + icy2 = λax2 + λby2 + λcxy =⇒

− ic = λa

ic = λb

2 i(a− b) = λc

Let us first focus on the solutions with λ ̸= 0. They are found to be as follows:

b = −a , c = iλa , λ ∈ {+2,−2}

This gives eigenfunctions of L̂z for λ = ±2 as follows:

f± = a(x2 − y2)± i2axy = a(x± iy)2 (83)

Action of L̂2. Are the functions just written above eigenfunctions also for L̂2 ? [Look at the expression (71).] Let
us examine it and do it for general a, b, c to have it more interesting.

L̂2f = [−(y2 + z2)∇2
x − (z2 + x2)∇2

y − (x2 + y2)∇2
z] (ax

2 + by2 + cxy)+

+ 2 (yz∇2
yz + zx∇2

zx + xy∇2
xy) (ax

2 + by2 + cxy)+

+ 2 (x∇x + y∇y + z∇z) (ax
2 + by2 + cxy) =

= −2a (y2 + z2)− 2b (z2 + x2)+

+ 2 cxy+

+ 2 (2ax2 + 2by2 + cxy + cxy) =

= (4a− 2b)x2 + (4b− 2a)y2 − (2a+ 2b)z2 + 6cxy

As we see, not every homogeneous polynomial of the 2nd degree form the title 4.6.2 is an eigenfunction of L̂2. But
if we take those of them which are eigenfunctions of L̂z , i.e. those obeying b = −a while c can be arbitrary in this
case, we obtain

L̂2f = 6[a(x2 − y2) + cxy] = 6f (84)

For now, we have learnt enough about the polynomials of the 2nd degree. We focused on the solutions with λ ̸= 0
only. The case of zero λ is not a solution now as it can easily be found: then we would have c = 0, a = b and such
a polynomial would not be an eigenfunction for L̂2.

Preliminary Summary for Homogeneous Polynomials of the 2nd Degree

L̂2f2,±2 = 6 f2,±2 , L̂zf2,±2 = ±2 f2,±2 (85)

where
f2,±2 = a(x± iy)2 = ar2 sin2 ϑ e± i2φ (86)

and let us note that 6 = l(l + 1) for l = 2.

Determination of the Eigenfunction f2,+1. We already know how to do it: according to (69), we obtain

f2,+1 =
1√
4
L̂−f2,+2 (87)
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Hence, we need to calculate

L̂−f2,+2 = (Lx − iLy)[a(x+ iy)2] = a[(Lx − iLy) (x
2 − y2 + 2 ixy] =

= aLx (−y2 + 2 ixy)− iaLy(x
2 + 2 ixy) =

= a[− iz2y + 2 i izx− i(− i)z2x− 2 izy] = 2a(−2 iyz − 2xz) = −4az(x+ iy)

Thus8
f2,+1 = −2az(x+ iy) = −2ar2 cosϑ sinϑe iφ (88)

Determination of the Eigenfunction f2,0. The derivation goes through analogous steps (using the lowering op-
erator). The result is

f2,0 = − 2√
6
a (x2 + y2 − 2z2) =

2√
6
ar2 (3 cos2 ϑ− 1) (89)

4.6.3 Overall Summary

The eigenfunctions Y m
l sought for are called spherical harmonic functions, or, more briefly, spherical harmon-

ics. Except for the insignificant factors, they are proportional to the functions flm found above. The eigenfunctions
Y l
l , as we have seen, can be found by examining the effect of the operators Lz and L2 and L2 on polynomials. Y m

l

for m < l can be determined by application of L−. Thus, we have determined the solutions – the eigenvalues and
common eigenfunctions (at least some of them) – of the equations

L̂2Y m
l = h̄2l(l + 1)Y m

l

L̂zY
m
l = h̄mY m

l

l ∈ {0, 1, 2, . . . }, m ∈ {−l,−l + 1, . . . , l}

(90a)
(90b)
(90c)

in which we explicitely displayed the the eigenvalues found. Although we have not calculated it for a general l, we
see that obviously (and it is indeed so) the following will apply:

• The lowest harmonic: a constant (Y 0
0 ; is can be seen even without calculating).

• We do not put the coefficient rl in the expression Y m
l , because the operators of the AM do not depend on r.

• The spherical functions, as we see, can be written in the form

Y m
l (ϑ, φ) = Θm

l (ϑ)Φm(φ) (91)

which we have found above [(47)], but we did not know yet, what indices would be at Θ. The functions Φm(φ)
have form (39), which satisfies the standard normalisation in accordance with (40). We will not write the functions
Θm

l (ϑ) alone. Instead, we directly write the function Y m
l (ϑ, φ) (a little below)

The spherical harmonic functions satisfy the Laplace equation; hence their name “harmonic”.

Parity. The spherical harmonics with an even l do not change their sign upon the r⃗ → −r⃗ inversion while those
with an odd l do:

Y m
l (−r⃗) = (−1)l Y m

l (r⃗) (92)

Thus, we numerically quantify the parity by values (−1)l.
8Some intermediate calculations and results needed for these and similar calculations will be convenient to write:

Lx(x
2) = 0 , Lx(y

2) = 2 iyz , Lx(z
2) = −2 iyz , Ly(x

2) = −2 ixz , Ly(z
2) = 2 ixz

Lx(zx) = − ixy , Lx(yz) = i(z2 − y2) , Ly(xy) = − iyz , Ly(zx) = i(x2 − z2) , Ly(yz) = ixy

There is no need to calculate explicitely all of the, for several of them can be derived by the cyclic permutations of the coordinates.
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Orthogonality and Normalisation. ∫
Y m∗
l (ϑ, φ)Y m′

l′ (ϑ, φ)dΩ = δll′δmm′ (93)

where dΩ = sinϑ dϑ dφ is an element of the spatial angle and the integration goes over the entire range.

Completeness. The spherical harmonics form a complete set of functions on a unit sphere. In other words, any
function of the variables ϑ, φ can be expressed as a linear combination of the sphererical harmonics.

f(ϑ, φ) =
∞∑
l=0

l∑
m=−l

clmY
m
l (ϑ, φ) (94)

Listing of the Lowest Spherical Harmonic Functions.

Y 0
0 (ϑ, φ) =

√
1

4π
(95a)

Y 1
1 (ϑ, φ) = −

√
3

8π
sinϑ e iφ (95b)

Y 0
1 (ϑ, φ) =

√
3

4π
cosϑ (95c)

Y −1
1 (ϑ, φ) =

√
3

8π
sinϑ e− iφ (95d)

Y 2
2 (ϑ, φ) =

√
15

32π
sin2 ϑ e i2φ (95e)

Y 1
2 (ϑ, φ) = −

√
15

8π
sinϑ cosϑ e iφ (95f)

Y 0
2 (ϑ, φ) =

√
5

4π

(
3

2
cos2 ϑ− 1

2

)
(95g)

Y −1
2 (ϑ, φ) =

√
15

8π
sinϑ cosϑ e− iφ (95h)

Y −2
2 (ϑ, φ) =

√
15

32π
sin2 ϑ e− i2φ (95i)

The following sections of the current paragraph (4.6.3) need to be read carefully and known about, but you will
not have to know how to derive the formulae that appear here, neither memorise them.

General Formula for the Spherical Harmonic Functions in the Condon-Shortley Phase Convention [6, 2, 3, 5].

Y m
l (ϑ, φ) = (−1)m

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cosϑ) e imφ form ∈ {0, 1, . . . , l} (96)

Evaluations of the spherical functions at negative indicesm can be obtained with the aid of the relation (which we
will not prove)

Y −m
l (ϑ, φ) = (−1)m [Y m

l (ϑ, φ)]∗ form ∈ {−l,−l + 1, . . . , l} (97)
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Hence, in the Condon-Shortley phase convention, the spherical functions with positive ms will oscilate with m
because of the factor (−1)m. There will be no such oscillations in the case of the negative-m spherical function.
Pm
l (x) is the associated Legendre function of the degree l and orderm. It is defined using the Legendre polynomials
Pl(x):

Pm
l (x) = (1− x2)m/2 dm

dxmPl(x) form ≥ 0 (98)

The Legendre polynomials can be expressed using the relation

Pl(x) =
1

2ll!

dl
dxl [(x

2 − 1)l] (99)

which is the Rodrigues formula.
The Condon-Shortley convention is usual in quantummechanics. Recall that we have introduced it in relation

with the general angularmomentum [equations (69)]. Indeed, in calculations such as thosewe did using the lowering
operator in sections 4.6.1 and 4.6.2, the same signs of the spherical harmonic functions are obtained as we have
written in the listing (95a)–(95i). To make the convention for the spherical harmonics completely described, they
are defined so that:

• the functions Y l
l for even l are positive, that is, for example, wewill have a > 0 in the formula f2,+2 = a(x+ iy)2 =

ar2 sin2 ϑ e i2φ [see (86)],

• the functions will be negative for odd l, see for instance Y −1
1 above.

In literature, one can often see spherical harmonics typed with both their indices as subscripts (Ylm); this is
most frequently being used for the real spherical harmonics, which are the functions expressed from the real and
imaginary parts of the usual (the complex) spherical harmonics (96). In the book [2], however, this notation is used
for the complex spherical harmonics (96). We can also find formula (96) used for negative indices m. This can be
done if we, e.g., define the Legendre polynomials for the negative values ofm too, which would not be difficult [6, 5].

5 Particle in a Spherically Symmetric Force Field

An example is the hygrogen atom in which the electron moves in a coulombic field.

5.1 General Spherically Symmetric Field

At least at the beginning, we will solve a more general problem, a one with an almost arbitrary sperically
symmetric potential energy. The task is to determine the eigenenergies and corresponding wavefunctions of such
a Hamiltonian [1, 2, 3], i.e. to find solutions to the equation

Hψ = Eψ (100)

where the Hamiltonian is
H = − h̄2

2m
∆+ V (r) (101)

V (r) is the spherically symmetric potential energy. It is often being called a potential, but its dimension (units) is
that of energy.9 We will show as an exercise that10

[H,Lx] = [H,Ly] = [H,Lz] = [H,L2] = 0 (103)
9V (r) differs from a potential by just a constant multiplicator; this can easily be seen if we express explicitly that it is a potential energy

of a point charge q in an electrostatic potential U(r): V (r) = qU(r). Here U(r) is really a potential, i.e. also by its dimension.
10Using (43), (105) and (106), it can be shown that the Hamiltonian (101) can be expressed in the form

H = Hr +
1

2mr2
L2 where Hr = − h̄2

2mr2
∂

∂r

(
r2
∂

∂r

)
+ V (r) (102)

The AM operators do not depend on r. Then, using also commutation relations of the type [L2, Lx] = 0, is is easily seen that formulae (103)
really apply.
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Therefore, it is possible to find commnon eigenfunctions of chosen three operators, for instance Lz , L2,H . (We can-
not add a fourth one since the cartesian components of L⃗ do not commute.) We will use the selected commutating
operators to find solutions to the problem (100). We have already found the common eigenfunctions for the two op-
erators, Lz and L2: the spherical harmonic functions Y m

l (ϑ, φ). In order for some eigenfunction of the Hamiltonian
H to be also an eigenfunction of the operators Lz and L2, the angular dependence of the eigenfunction must remain
the same as it is in the case of the spherical harmonic functions. Therefore, the solutions to the problem (100) must
be sought in the (factorised) form

ψ(r⃗) = R(r)Y m
l (ϑ, φ) (104)

We need to find the unknown functionsR(r) and of course also the eigenvalue (energies)E. For the Laplace operator
appearing in (101), it is advantageous to use the expression using spherical coordinates. (which we will learn about
in the exercise):

∆ ≡ ∇⃗2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ (105)

where
∇2

ϑ,φ =
1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2
(106)

The Laplace operator and the derivatives in it act on functions in the followig sense:

∇⃗2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+ and similarly the remaining terms

We then write our Hamiltonian as follows:

H = − h̄2

2m

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ

]
+ V (r) (107)

Substitute the Hamiltonian (107) and the proposed form (104) of the solution into the stationary SchE (100). We will
get the equation (omitting indices l andm and the function variables)

− h̄2

2m

{
1

r2
∂

∂r

[
r2
∂(RY )

∂r

]
+

1

r2
∇2

ϑ,φ(RY )

}
+ V RY = E RY (108)

We will now use the standard procedure for solving separable differential equations (DEs): we do the derivatives in
this way:

∂(RY )

∂r
= Y

dR
dr

and divide the whole equation by the expression RY . We regroup the terms and get the equation

1

R

d
dr

(
r2

dR
dr

)
+

2m

h̄2
r2[E − V (r)] = − 1

Y
∇2

ϑ,φY (109)

This is already a differential equation in a separate form, because one group of terms depends on only one of the
variables (r), while the other group depends only on the remaining variables ϑ, φ. Therefore, no matter how we
change e.g. the variable r, the right side of the equation will certainly not change, and therefore neither its left side.
Thus

− 1

Y
∇2

ϑ,φY = konšt def
= λ (110)

Knowing that [see (43)]
L2 = −h̄2∇2

ϑ,φ

we obtain
L2 Y = h̄2λY (111)

which is the problem that we already dealt with and solved [results (90a), (90b) and further in that section]. This
time we have “peeled of” the sub-task [equation (111)] from the larger task – from the problem of the particle in
a spherically symmetric field. After simple rearangements and substiting λ = l(l + 1), differential equation (109)
then takes the form

1

r2
d
dr

(
r2

dR
dr

)
+

{
2m

h̄2
[E − V (r)]− l(l + 1)

r2

}
R = 0 (112)
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This is sometime called the radial Schrödinger equation. R(r) is the radial wavefunction. If we do the outer deriv-
ative with respect to r in radial SchE (112), we obtain its other form:

d2R
dr2 +

2

r

dR
dr +

{
2m

h̄2
[E − V (r)]− l(l + 1)

r2

}
R = 0 (113)

This is an ordinary dofferential equation of the 2nd order.

Physical Meaning of the Term with l.

Vl = V (r) +
h̄2

2m

l(l + 1)

r2
(114)

This is an effective potential energy of given particle with inclusion of the contribution of the centrifugal force.
Details can be found in the book [2] and other.

Simplification by a Substitution.
χ(r) = rR(r) (115)

Using this substitution [1], the radial SchE (113) is simplified to11

d2χ
dr2 +

{
2m

h̄2
[E − V (r)]− l(l + 1)

r2

}
χ = 0 (116)

This ordinary differential equation (DE) belong to the class of singular differencial equations. The total wavefunction
for the spherical problem is then, according to (104), expressed as

ψ(r⃗) =
χ(r)

r
Y m
l (ϑ, φ) (117)

Restriction to Bound States. It is known that problem (100) of a particle in a central (i.e. a spherically symmetric)
field has two kinds of solutions:

• Bound states – these are states, a wavefunction of which is localised around the force centre which mean that it
vanishes are large r: lim|r⃗|→∞ |ψ(r⃗)| = 0. Physically, this means that there is a high probability of finding the
particle near the centre and tiny (practically zero) find it somewhere far from it.

• Scattering states – these are states, a wavefunction of which is delocalised, that is the above-written limit is non-
zero. Physically, this means that the particle can with a non-negligible probability be found even at large distances
from the force centre

We will discuss further properties of this two kinds of states a little later. However, we state already here that we
will only search for bound states. Their wave functions, as we have written above, acquire non-negligible values in a
certain restricted spatial domain. Therefore, we require the normalisation condition12∫

|ψ(r⃗)|2d3r = 1 (118)

to apply. We express the integration element using the spherical coordinates:
d3r = r2 sinϑ dr dϑ dφ = r2dr dΩ (119)

From the normalisation condition (118), and from the conventional normalisation of the spherical functions,
∫
|Y m

l (ϑ, φ)|2dΩ =
1 [more generally expressed by the orthonormality (93)], the following condition for the normalisation of the aux-
iliary function χ(r) is obtained: ∫ ∞

0

|χ(r)|2dr = 1 (120)

For such an integral to exists, χ(r) has to converge to zero sufficiently rapidly (for r → ∞).

11To obtain it, we need to derived the relations dR
dr = − χ

r2
+

1

r

dχ
dr and also d2R

dr2 =
2

r3
χ− 2

r2
dχ
dr +

1

r

d2χ
dr2 .

12In the case of scattering states, the wave function could not be normalized to a finite number because it is not limited to a finite region
of space. By convention, we would “normalise” it to the δ function.
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Solving Equation (116) in a Neighborhood of the Singular Point r = 0. Assume that the potential of the given
problem fulfills the condition

lim
r→0

[r2V (r)] = 0 (121)

Although this somewhat reduces the generality of the class of potentials being studied, let’s realize that this is
fulfilled for any potential that doesn’t diverge at the origin, and even for many that diverge. It is especially important
that the condition (121) is fulfilled also by the Coulomb potential for which the potential energy is V (r) ∝ 1/r (i.e.
which diverges at the origin). So, we can neglect some terms in singular DE (116) for r → 0 and obtain the equation

d2χ
dr2 − l(l + 1)

r2
χ = 0 (122)

We try to find a solution of the equation in the neighbourhoud of the singular point r = 0 in a form of the power
series

χ(r) = rα
∞∑
k=0

dk r
k

(The factor rα stands there for a case if the series started from the term rα and it is practical to be prepared to that
in advance.) It we limit our treatment to really very small r, then it will be sufficient to consider the lowest term of
the series: χ = d0r

α. We substitute it to equation (122) and obtain

α(α− 1) d0 r
α−2 − l(l + 1)

r2
d0 r

α = 0 (123)

and subsequently
α(α− 1) = l(l + 1)

which is a quadratic equation for α (at a given quantum number l). Its solutions are

α1 = l + 1 ⇒ χ ∝ rl+1 , α2 = −l ⇒ χ ∝ 1

rl

We reject the second of these solutions as unphysical, because such a radial wave function χ(r)/r would certainly
be unbounded at r → 0. Therefore

χ = c1 r
l+1 + c2

1

rl
, kde c2 = 0

Solving the Equation (116) for Large r. Assume that the potential energy V of the particle under study fulfills

lim
r→∞

V (r) = V∞ = const (124)

Then we can neglect the term with 1/r2 in DE (116) and the equation thus take the form

d2χ
dr2 +

2m

h̄2
(E − V∞)χ = 0 (125)

This is a linear ordinary DE of the 2nd order with constant coefficients, thus very simple in its form. During your
studies, you probably encountered the equation of this form many times, for the first time in the study of the linear
harmonic oscillator (where the independent variable was the time t, not the distance r). Thus we know that it is
easy to solve analytically. However, we must distinguish the cases in this equation:

• E − V∞ > 0; The equation is then really the same, from a mathematical point of view, as the one for a harmonic
oscillator, with oscillating solutions, i.e. functions of the type cos kr, sin kr, or, equivalently, e± ikr. k is a real
number: k =

√
2m(E − V∞)/h̄2. These are functions that definitely do not exhibit localisation to some finite

spatial domain. Therefore, they correspond to the above mentioned scattering states [see above eq. (118)]. Thus
we have just found out the stattering states have energies greater than V∞. Although the scattering states
cannot be normalised, they are not sheerly unphysical and they are of great importance for physics. In this course,
however, we will not address them in details, as we have stated it above eq. (118).
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• E − V∞ < 0; equation (125) then has solutions in a form of non-oscillating exponential functions. We are going
to address these solutions and as we will soon see, one of them is physical and corresponds to a bound state.

Denote
κ2 =

2m

h̄2
(V∞ − E) > 0 (126)

Then
d2χ
dr2 − κ2χ = 0 =⇒ χ = B1e

−κr +B2 eκr︸︷︷︸
diverguje

=⇒ B2 = 0 =⇒ χ = B1e
−κr

The solution of the form eκr, where κ > 0, is unphysical, because for large r it would yield infinite values of the
wave function. Hence we dropped it. But the solution e−κr gives a bound wave function which is even localised in
the vicinity of the potential centre. Therefore, this solution corresponds to a bound state. So, with the help of (126)
we found out that bound states have energies smaller13 than V∞.

A classical analogue to our system under study is a body in the gravitational field of a mass centre: for instance,
a planet or a comet in the gravitational field of the Sun, as an (almost) motionless mass centre. If the mechanical
(kinetic plus potential) energy the moving body is negative, the body does not leave the space of the solar system
and it orbits an ellipse around the Sun. This is the case of planets as well as the periodically returning cometes.
If, however, the mechanical energy of the body is positive, it keeps moving away from the solar system – will not
return to it. This is the case of, e.g., space probes Pioneer 10 and Pioneer 11 to which the so-called escape velocity
was given, sufficient to untie them from the Sun. This is the classical analogue to a scattering state.

Summary. The radial function R = χ(r)/r of a bound state in the problem of a spherically symmetric potential
has the asymptotic behaviour approximately as follows:

Rl(r) ∝

 rl , r → 0

1

r
e−κr , r → ∞

(127)

where κ is given by formula (126). In deriving these results, we used the assumptions that the potential energy
V (r) around the origin fulfills the condition limr→0 [r

2V (r)] = 0 and that at large distances from the centre
limr→∞ V (r) = V∞ = const. l ∈ {0, 1, 2, . . . } is the quantum number following from solving the angular part of
the whole problem formulated by equation (100). We added the quantum number l as an index to the radial wave
function because the function depends on it, as it follows from the above said. To determine the radial functions
completely, we must, of course, specify a particular form of the potential energy V (r). We will then discover that,
apart from the quantum number l, the radial function will depend on another quantum number.

It is highlighted above that the asymptotics (127) is only approximate, in a kind of framework sense. We will
see this later in the case of the hydrogen atom, and we may be able to wonder why the above considerations about
asymptotics at singular points were not entirely consistent.

The whole wave function (104), since it is also to have a probabilistic interpretation, must be normalized to 1,
which is expressed by equation (118). And since the spherical harmonic functions are also normalized to 1 [see (93)
for l = l′,m = m′], the radial wave functions must also be normalized to 1:∫ ∞

0

R2
l (r) r

2 dr = 1 (128)

We have already expressed this equivalently by condition (120) for the chi(r) function.
13The usual case is V∞ = 0. For example, the Coulombic potential energy satisfies limr→∞ q1q2/(4πε0 r) = 0 . Therefore we often say

that the bound states have negative energies and the scattering states positive energies. Let us, however, work with a general V∞ in the
case of a general spherically symmetric potential. V∞.
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5.2 The Hydrogen Atom and Like Ions

This is a particular example of a spherically symmetric force field or a potential; hence we will discuss this whole
section as an exercise.
We now make the potential energy V (r) specific:

V (r) = − 1

4πε0

Ze2

r
(129)

Thus, we take the value of Ze as the nucleus charge; the case of Z = 1 would correspond to the hydrogen atom,
the case of Z = 2 to the kation He+ of the helium atom, to the kation Li2+, etc. To save writing, let’s introduce the
notation [2]

e′
2
=

e2

4πε0
(130)

5.2.1 The Eigenenergies and Wavefunctions

The task to be solved is equation (116) for negative energies, for those correspond to bound states. For the actual
potential energy, the constant κ [see (126)] will be expressed as

κ =

√
2m

h̄2
(−E) (131)

as V∞ = 0 [see (124)]. The constant κ is an inverse length, as for its physical dimension. Therefore, it will be useful
for us to introduce a dimensionless distance from the nucleus:

ρ = 2κ r =

√
−8m

h̄2
E r (132)

We will now rewrite the DE (116) using the dimensionless distance ρ. Instead of χ = χ(r), it then becomes con-
venient to use some other, differently denoted function;14 let it be χ̃(ρ):

χ̃(ρ) = χ(r) (133)

We express
dχ
dr =

dχ̃
dρ

dρ
dr = 2κ

dχ̃
dρ ,

d2χ
dr2 = 4κ2d2χ̃

dρ2

and obtain the DE (after dividing by the constant 4κ2)

d2χ̃
dρ2 +

[
2mE

h̄24κ2
+

2m

h̄2
Ze′2

2κρ
− l(l + 1)

ρ2

]
χ̃ = 0

We will use the expression for κ according to (131) to cast the equation in the form

d2χ̃
dρ2 +

[
−1

4
− κ
E

Ze′2

2ρ
− l(l + 1)

ρ2

]
χ̃ = 0

This motivates us to introduce also the constant

β = −Ze
′2κ

2E
(134)

the value of which is positive (as E < 0 and which can be, using (131), expressed also in the form

β =

√
−mZ2 e′4

2Eh̄2
(135)

14In similar cases, a different notation is usually omitted. Strictly, however, a function expressed using another variable should be
labelled differently. So at least now we’re doing it here, though not elsewhere. This depends on the circumstances when it is appropriate
and, conversely, when a different notation would be a just an unnecessary complication.
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(See also [2], where this constant is introduced for Z = 1.) So, we finally arrive at a compact DE

d2χ̃
dρ2 +

[
−1

4
+
β

ρ
− l(l + 1)

ρ2

]
χ̃ = 0 (136)

According to the general15 result (127) and using (115), we already know how its solutions behave at the singular
points:

χ(r) = χ̃(ρ) ∝

{
rl+1 , r → 0

e−κr , r → ∞
∝

{
ρl+1 , ρ→ 0

e−ρ/2 , ρ→ ∞
(137)

Of course, we want to find the form of the solution also elsewhere, not only in these extreme points. So we can look
for it in the form

χ̃(ρ) = ρl+1e−ρ/2 v(ρ) (138)

where v(ρ) is some unknown function to be determined. Substitute this Ansatz into DE (136). After rather lengthy
but simple manipulations, we obtain a differential equation for v(ρ):

ρ
d2v
dρ2 + [2(l + 1)− ρ]

dv
dρ + (β − l − 1)v = 0 (139)

which is no more a singular DE. We look for the solution to it in a form of a power series

v(ρ) =
∞∑
k=0

ckρ
k (140)

This yields expressions for the derivatives:

v′(ρ) =
∞∑
k=1

k ckρ
k−1 , v′′(ρ) =

∞∑
k=2

k(k − 1) ckρ
k−2

When we substiture all this into the last DE, we get
∞∑
k=2

k(k − 1)ckρ
k−1 + [2(l + 1)− ρ]

∞∑
k=1

kckρ
k−1 + (β − l − 1)

∞∑
k=0

ckρ
k = 0

We now reexpress this equation to the form
∞∑
k=0

[ somethingk ] ρk = 0

This will be possible if we properly shift the summation indices. The resulting equation will be
∞∑
k=0

{ck+1[k(k + 1) + 2(l + 1)(k + 1)]− ck(k + l + 1− β)} ρk = 0 (141)

For this must hold for any (non-negative) ρ, the coefficient multiplying the expression ρk has to be zero for each
index k. From this finding, we obtain the recurrent formula

ck+1 =
k + l + 1− β

(k + 1)(2l + 2 + k)
ck (142)

So, we succeeded in finding away how to complete the solution of the DE (139), and by this also of thewhole problem
of the hydrogen atom. But will this solution automatically be a physical one? The coefficient ck determined are to

15although that one in some cases is not fully accurate, but it will not matter
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be substituted to series (140). Let us explore if the radial wave function with the v(ρ) determined in the above way
tends to zero for ρ→ ∞ as it ought to. For this purpose, let us first see how the series (140) converges.

ck+1

ck
= [k → ∞] =

1

k

We know that the same ratio is found also for the exponential function eρ:

eρ =
∞∑
k=0

1

k!︸︷︷︸
bk

ρk ⇒ bk+1

bk
= [k → ∞] =

1

k

It means that the function v(ρ) will behave as an exponential function for large ρ:

v(ρ) ∝ eρ pre ρ→ ∞

Now look at Ansatz (138). We see that for the v(ρ) just examined

χ̃(ρ) ∝ ρl+1eρ/2 for ρ→ ∞

i.e. it diverges. Thus, the determined solution is unphysical. However, the hope of finding a physical solution
will come to life when we realise this: if the coefficient ck is zero at certain k, then, according to the recurrent
formula (142), also all higher coefficients vanish. By this, the infinite series (140) becomes a polynomial and con-
sequently its values will be quantifiable for arbitrarily large ρ (it will be convergent, in other words). Denote its
degress as nr. Let us examine its asymptotics:

lim
ρ→∞

χ̃(ρ) = lim
ρ→∞

ρl+1e−ρ/2v(ρ) ∝ lim
ρ→∞

ρl+1e−ρ/2ρnr = 0

Thus, such a solution is physical. So, we want

cnr+1 = 0 , cnr ̸= 0 (143)

Recurrent formula (142) applied to k = nr then yields that

β = nr + l + 1 (144)

Looking at the definction of the constant β [formula (134)], we already see that the eigenenergy E will depend on
the indices, that is, it will be quantised. We will make this more specifice later. As we also see, we got β as a natural
number (a positive integer), since l is a non-negative integer and the degree of the polynomial is

nr ∈ {0, 1, 2, . . . }

Therefore, we have a good motivation to change the notation of β to n:

β = n ∈ N (145)

Already at this point we can, using (135) and (130), express the eigenenergies of the hydrogen atom or its like ion16:

En = −m
h̄2

(
e2

4πε0

)2
1

2

Z2

n2
, n = 1, 2, 3, . . . (147)

16In Hartree atomic units, e = m = h̄ = 1
4πε0

= 1. Thus, in these units e′2 = 1 and

β =

√
−Z2

2E
, En = −1

2

Z2

n2
, n = 1, 2, 3, . . . , κn =

Z

n
, ρ = 2

Z

n
r (146)

which are often more practical and easier to remember expression; cf. also (151).
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We have not discussed this expression in connection with the contributions of the kinetic and potential energy, but
you can read something about it in Appendix B, for example.

The analysis done above [see (144) and (145)] implies that a certain value of the quantum number n can be
obtained from several combinations of the numbers nr and l. Different nr values imply different degrees of the
polynomials, so also different eigenfunctions. Similarly, different values of l imply different spherical functions,
thus also different eigenfunction too. In other words, the eigenenergy E will be degenerate (except from the case of
n = 1, as we will see). So, the indices are coupled according to

n = nr + l + 1 , nr, l ∈ {0, 1, 2, . . . } (148)

that is (and for completeness we add also the quantum number m which should not be confused with the mass
denoted by the same symbol)

n ∈ {1, 2, 3, . . . } , l ∈ {0, 1, . . . , n− 1} , m ∈ {−l, −l + 1, . . . , l} , nr = n− l − 1 (149)

We now summarise what we have learnt up till now about the eigenfunctions and let us try to find expression for
them. We have found out that the radial function will depend on the quantum number l; see (127) in the section on
the general spherically symmetric potential energy. Then, in the present section, we discovered that it will depend
also on the quantum number n. Therefore, we will write R(r) = Rnl(r). In order not to be lost in the sequence of
the various substitutions and steps, we first recall and run through the subsequent expressions (104), (115), (132),
(133), (138), (140), (142), (148) which lead us to the finding a mathematical expression for the wavefunction. By
putting together the appropriate formulae, we get

ψnlm(r, ϑ, φ) = Rnl(r)Y
m
l (ϑ, φ) (150)

The index n is called the principal quantum number; it determines the energy of the eigenstate. The index l is
called the orbital quantum number; it determines the magnitude of the angular momentum. The indexm is called
the magnetic quantum number; it determines the projection of the angular momentum on the z axis (i.e. the z-
component). The scaling constant κ defined by formula (131) depends on the eigenenergy; this dependence can be
converted on the dependence on the principal quantum number:

κ = κn =
me′2

h̄2
Z

n
, ρ = 2κn r (151)

The radial function will then be expressed as

Rnl(r) =
χ(r)

r
= 2κn

χ̃(ρ)

ρ
= 2κn

1

ρ
ρl+1e−ρ/2 v(ρ) = 2κn ρ

le−ρ/2

nr∑
k=0

ckρ
k

t. j.

Rnl(r) = 2κn e
−ρ/2

nr∑
k=0

ckρ
l+k (152)

The above exposition implies that the radial functions Rnl(r) and, of course, the auxiliary radial functions χ(r)
a χ̃(ρ), can be determined to be real.

Degeneracy of the Levels. Using formulae (147), (149) and (150) we can see that the level n = 2 is 4 times degen-
erate17 Generally, the nth level is n2 times degenerate, i.e. there are n2 mutually linearly independent eigenfunctions
corresponding to the energy level En. (The number n2 is not difficult to calculate. you just have to think about it
and know how to add an arithmetic sequence.) We also see, whence the degeneracy comes from: a part of it comes
originates in the sperical harmonic functions Y m

l , in which for each l we have 2l + 1 different values of m. This
degeneracy is related to the spherical symetry of the problem under study [2, 3]. The other part originates in the
radial component of the solution, as for one principal quantum number n, we have n different magnitudes of the
angular momentum, thus n different indices l.

17In these considerations, we do not take into account the spin degeneracy. We only consider the eigenvalues and eigenfunctions of
Hamiltonian (101) with the potential energy (129).
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5.2.2 Calculations of the Radial Wavefunctions

In principle, we have already determined the radial wavefunctions by the expression (152) and by the recurrent
formula (142). There are several reasons, why this is not a final form yet. For example, we have not yet determined
the coefficients ck; we only know that we will have to apply the recurrent formula and surely also the normalisation
condition. We are now going to do these calculations as an exercise. For this purpose, we first write in one place all
needed formulae and quantities in a convenient form.

The auxiliary constant κn [see (151)] has a dimension of inverse length. Therefore, it can be very conveniently
expressed in terms of the first Bohr radius aB of the hydrogen atom,

aB =
h̄24πε0
me2

= 0,5291772083 . 10−10 m (153)

or, here even more conveniently, with the help of the generalised first Bohr radius aZ , which characterises an
hydrogen-like ion with Z protons:

aZ =
aB
Z

(154)

The constant κn can then be expressed as
κn = κn(Z) =

1

naZ
(155)

where we displayed its dependence on the proton number Z . Further formulae needed are

ρ = 2κnr (156)

χ̃nl(ρ) ≡ χnl(r) = rRnl(r) (157)
We are going to search the radial functions on the space of real functions; we have found out that it is possible to do
so. We will express the normalisation condition, for instance specifically for the function χ̃nl(ρ), according to (120)
by the equation

1

2κn

∫ ∞

0

χ̃2
nl(ρ)dρ = 1 (158)

which is perhaps a most practical one to calculate the coefficients using the normalisation condition. We will also
need the recurrent formula (142), which we now rewrite using n instead of β:

ck+1 =
k + l + 1− n

(k + 1)(2l + 2 + k)
ck (159)

We will do our following calculations of the coefficients ck with the use of the functions χ̃nl(ρ). Thus, according
to (157), (156) and (152) we express

χ̃nl(ρ) = e−ρ/2

nr∑
k=0

ckρ
l+k+1 (160)

Wavefunction for n = 1. According to (149), l = nr = 0. Using this we obtain χ̃ = ρe−ρ/2c0. Using the
normalisation condition, we get c0 =

√κ1. We note in passing that it is worth to calculate integrals of the form

In ≡
∫ ∞

0

xne−x dx = n! (161)

We arrive at the results

R10(r) =

(
1

aZ

)3/2

2 e−r/aZ (162)

Wavefunction for n = 2, l = 0. In this case nr = 1; thus

ψ2,0,0(r, ϑ, φ) = Y 0
0 (ϑ, φ) 2κ2 e

−ρ/2 (c0 + c1ρ) (163)

whereas according to eq. (142) c1 = −c0/2 etc. (An exercise.)
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Wavefunctions for n = 2, l = 1. In this case nr = 0; thus
ψ2,1,m(r, ϑ, φ) = Y m

1 (ϑ, φ) 2κ2 e
−ρ/2 c0 ρ (164)

atď. (An exercise.)

Listing of the Lowest Radial Functions for a Hydrogen-like Ion with the proton number Z. (This includes also
the hydrogen atom itself as the particular case of Z = 1.)

R10(r) =

(
1

aZ

)3/2

2 e−r/aZ (165a)

R20(r) =

(
1

2aZ

)3/2(
2− r

aZ

)
e−r/(2aZ) (165b)

R21(r) =

(
1

2aZ

)3/2(
r

aZ
√
3

)
e−r/(2aZ) (165c)

R30(r) =

(
1

3aZ

)3/2

2

[
1− 2

3

r

aZ
+

2

27

(
r

aZ

)2
]
e−r/(3aZ) (165d)

R31(r) =

(
1

3aZ

)3/2
4

9

√
2

(
1− 1

6

r

aZ

)
r

aZ
e−r/(3aZ) (165e)

R32(r) =

(
1

3aZ

)3/2
2

27

√
2

5

(
r

aZ

)2

e−r/(3aZ) (165f)

6 Approximate Methods of Solving the Stationary Schrödinger Equation for
Bound States

Thus, the task is to solve the problem [1]
Ĥun(r⃗) = Enun(r⃗) (166)

where Ĥ is a time-independent Hamiltonian of a system. Now we use symbols un(r⃗) for its eigenfunctions. To
keep the notation simple, we limit our treatment to one-particle systems; the principle of the method can, however,
be directly generalised to many-particle systems.

6.1 The Variational Method

Definition 7: A function f(r⃗) is called quadratically integrable if∫
|f(r⃗)|2 d3r <∞

(The integration is taken over the entire space.) In other words, f is a normalisable function.

Theorem 8 (the variational principle): Assume that Ĥ is a hermitian operator with a discrete spectrum
with the lowest eigenvalue being E0. Let the eigenfunctions of the operator Ĥ form a complete
orthonormal system (set). The following inequality then holds for arbitrary quadratically integrable
function f(r⃗) ∫

f ∗(r⃗)Ĥf(r⃗) d3r∫
f ∗(r⃗)f(r⃗) d3r

≥ E0 (167)
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Proof: In accordance with (166), we denote the eigenfunctions and eigenvalues of the operator Ĥ as un(r⃗) and En.
The assumed completeness of the set of the functions un(r⃗) in other words mean that any function can be expressed
as their linear combination. Exactly in this waywe dowith the function f(r⃗): rozvinieme ju podľa sústavy vlastných
funkcií operátora Ĥ . we will expand it in a series By convention, we will be using the indexing of the eigenfunctions
and eigenvalues so that they would start from n = 0 (the lowest eigenvalue) and E0 ≤ E1 ≤ E2 ≤ . . . . Individual
eigenvalues may also be degenerate, i.e. some of them may be equal each other. The expansion under consideration
then reads

f(r⃗) =
∞∑
n=0

cnun(r⃗) (168)

The orthonormality of the eigenfunctions of the operator Ĥ assumed by the theorem is expressed as∫
u∗m(r⃗)un(r⃗) d3r = δmn (169)

We can similarly expand

f ∗(r⃗) =
∞∑
n=0

c∗nu
∗
n(r⃗)

Substitute now these expressions into the left-hand side of the variational principle (167). Calculate∫
f ∗(r⃗)Ĥf(r⃗) d3r =

∞∑
m=0

∞∑
n=0

c∗mcn

∫
dr3 u∗m(r⃗)Ĥun(r⃗) = [see (166)] =

∞∑
m=0

∞∑
n=0

c∗mcn

∫
dr3 u∗m(r⃗)Enun(r⃗) =

= [the orthonormality] =
∞∑
n=0

|cn|2En

Now we can immediatelly write also the results for the denominator of the variational principle (167):∫
f ∗(r⃗)f(r⃗) d3r =

∞∑
n=0

|cn|2

It is obvious that

E0 ≤ E0

E0 ≤ E1

. . . . . .

E0 ≤ En

. . . . . .

We multiply each of these inequalities by its respective |cn|2. We then add the inequalities together. In this way we
get

E0

∞∑
n=0

|cn|2 ≤
∞∑
n=0

En|cn|2

i.e.

E0 ≤

∫
f ∗(r⃗)Ĥf(r⃗) d3r∫
f ∗(r⃗)f(r⃗) d3r

what needed to be proved.

Remark: If we were interested how to calculate (at least formally) the coefficients cn in the proof just done, we
would take equation (168), multiplied it by the function u∗m(r⃗) and integrate over the integration domain. Using the
orthonormality (169), we would obtain the expression

cn =

∫
u∗n(r⃗)f(r⃗) d3r

36



Coefficients are being expressed in this way very often in quantum physics and especially in studies of electronic
structure,

How to determine the eigenfunctions and eigenvalues using the variational principle (167)? The principle itself
does not provide any result for the functions nd values. We can, however, construct a trial function f(r⃗, α1, α2, . . . , αp) ≡
f(r⃗, α), in which α ≡ (α1, α2, . . . , αp) are some parameters. We substitute the function into the left-hand side of
the variational principle (167). By doing this, we get a function F which depends on the chosen parameters:∫

f ∗(r⃗;α)Ĥf(r⃗;α) d3r∫
f ∗(r⃗;α)f(r⃗;α) d3r

= F (α1, . . . , αp) (170)

We determine such values of the parameters αj , at which the function f has its global minimum. Let us denote
them by α̃1, . . . , α̃p. In this way, we managed to approach the unknown exact lowest eigenenergy E0 as much as
possible for the proposed form of the trial function. We will declare that the lowest of the values F we were able
to determine be an approximation to the ground-state energy. It is an upper estimate for the exact energy. We
will declare that the trial function (the one with the optimal values of the parameters) is an approximation to the
ground-state wavefunction.

Although the above method may seem rather crude, it can give excellent results with a suitably chosen trial
function and a sufficient number of parameters. Since we usually cannot find exact solutions to problem (166)
(except for a few cases, such as the hydrogen atom), wemust use approximate methods of solution. It is the variation
method that is used very often, which we will talk about later.

The variation method can also be used to find some of the lowest excited states of the system (i.e. those that
have their eigenenergies greater than E0). We will show this for the case when the ground state is non-degenerate
(which is a common situation).

Theorem 9:Assume that Ĥ is an operator as in Theorem 8 and that, in addition, its lowest eigenvalue
E0 (the ground state) is non-degenarate and its respective eigenfunction is u0(r⃗). Let g(r⃗ be a
quadratically integrable function orthogonal to 0(r⃗). The inequality∫

g∗(r⃗)Ĥg(r⃗) d3r∫
g∗(r⃗)g(r⃗) d3r

≥ E1 (171)

then holds, in which E1 is the energy of the first excited state (and it can also be degenerate)

Proof: Similarly as in the previous theorem, we expand the function under consideration into a series of the eigen-
functions of the operator Ĥ : Ĥ :

g(r⃗) =
∞∑
n=1

cnun(r⃗)

This time, however, we have omitted the eigenfunction u0(r⃗) of the lowest level from the linear combination, because
according to the assumption, g(r⃗) should be orthogonal to u0(r⃗). (We can easily be convinced explicitely that if we
include the term with c0u0(r⃗) into the summation, the orthogonality∫

g∗(r⃗)u0(r⃗) d3r = 0

would not apply.) We proceed similarly to the previous proof, but with the difference that we write a sequence of
non-strict inequalities.

E1 ≤ En pre n ≥ 1

and again, we apply the summation only from the index 1. In this way we arrive at the inequality (171) ofTheorem 9,
what needed to be proved.
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Theorem 9 applied to the Hamiltonian operator thus allows us in principle to find an upper estimate of the ei-
genenergy of the first excited level and the approximate wave unction of this level (which can also be degenerate).
We need to optimise the trial function for this calculation, similarly as in the case of Theorem 8. According to The-
orem 9, we construct the function to be orthogonal to the ground state. After an optimisation, the trial function will
become an approximate eigen-wavefunction of the first excited state. Thus, before calculating the excited state, we
need – at least in principle – to have a determined wave function of the ground state (using a variational caclula-
tion vased on Theorem 8 for example). Since the wave function of the ground state is usually only approximately
known, the calculation of the excited state in this way on the basis of the knowledge of the approximate eigenstate
will generally be less accurate than the calculation of the ground state. And it can be seen that similarly we could
look for higher and higher levels (but increasingly less accurate).

However, the specific implementation of the variational method is such that we calculate the ground state and
also a certain number of excited states at once, by searching for the whole system of eigenvectors and values of the
matrix (we will talk about this in section 6.1.1). Then we can achieve that the accuracy of determining the excited
states will be similar for a given Hamiltonian as the accuracy of determining the ground state (and at the same
time such as the numerical diagonalization method used is able to achieve). However, as we will learn later, in the
search for excited states of many-electron atoms or molecules, we also encounter principally different fundamental
difficulties, and these in particular will impair the accuracy of the results.

Even degeneracy of any of the levels is not an obstacle to the application of the variational principle. We have
formulated Theorem 9 for the case of non-degenerate ground state for the sake of brevity and greater clarity only.

In Theorems 8 and 9, we assumed that the spectrum of the operator Ĥ is discrete and that the corresponding
eigenfunctions form a complete set of functions. However, even this (absolute) completeness is not necessary; if we
want to find the wave functions and energies corresponding to the discrete part of the spectrum by a variational
method (that is bound states, i.e. spatially localized and bounded eigenfunctions), then it is sufficient that the set of
functions un(r⃗) allows to expand in series (168) any spatially localized function f(r⃗), because we don’t even want
to find another one.

Theorems 8 and 9 show us that stationary SchE can be understood as equivalent to the variational principle. Not
only is this an important theoretical knowledge, but it gives us certainty in practical calculations that we cannot
”shoot under (the target)” when calculating the energy.

6.1.1 An often used Version of the Variational Method

The trial function is most frequently (especially in numerical calculations on computers) being seached in the
form

f(r⃗;α) =

p∑
i=1

αifi(r⃗) (172)

where fi(r⃗) are some known functions. We used a shortcut notation for the set of the variational parameters on the
left-hand side (LHS): α ≡ (α1, α2, . . . , αp). If some (usually unknown) function is expanded in a series of known
functions, the sequence of the functions [in this case fi(r⃗)] is called a basis set, or briefly a basis. We should now to
minimise the function F (α) defined by fraction (170), that is, to determine the optimal parameters α̃, for which the
function F (α) acquires its minimum value. Substituting for f(r⃗;α) gives

F (α) =

∑
i

∑
j

α∗
i Hij αj∑

i

∑
j

α∗
i Sij αj

(173)

where

Hij =

∫
f ∗
i (r⃗) Ĥ fj(r⃗) d3r (174)

Sij =

∫
f ∗
i (r⃗)fj(r⃗) d3r (175)
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Hij are the matrix elements of the Hamiltonian in the given basis. Sij are the overlap integrals, i.e. scalar products.
Hence, the basis functions fi neeed not be normalised to 1. They even need not be (mutually) orthogonal. (If they
are, then calculations with them are simpler, od course.) Since we are in quantum mechanics, the function f(r⃗, α)
should be (once the opetimal parameters have been determined) a wave function of the electron, possibly of some
other particle. For this reason, we may already at this point require its normalisation to unity:∫

f ∗(r⃗;α)f(r⃗;α) d3r = 1 (176)

Therefore, the denominator of fraction (173) has to be 1 for a correct function f(r⃗;α):∑
i

∑
j

α∗
i Sij αj = 1 (177)

However, in doing a minimisation of the function F (α), the trial function f(r⃗, α) is being varied in a rather arbitrary
(e.g. also random) way. These variations would in general lead to violation of the condition (176). Thus, if we aimed
to straightforwardly minimise F (α) [given by formula (173)], we would relly have to consider and to write also
its denominator.18 However, we better want to avoid this as it woult not be practical. We prefer to minimise the
simplified function

Fčitateľ(α) =

p∑
i=1

p∑
j=1

α∗
i Hij αj (178)

whilemaintaining condition (177). Thismathematical task can be solved using the Lagrangemultiplier (LM)method:19
we define the new function

F (α, λ) = Fčitateľ(α) + λ

(
1−

p∑
i,j=1

α∗
i Sij αj

)
(179)

The the yet unknown constant λ is called the Lagrange multiplier. The extrema of the function F (α, λ) are de-
termined by calculating its partial derivatives with respect to the particular arguments, which are the (in general)
complex parameters αj . It is a set of p complex variables, i.e. 2p real variables. We decompose each of the αj to its
real and imaginary parts: αj = Xj+ iYj . By doing this, we obtain the following equations (the necessary conditions
for the extremum):

∂F

∂X1

= 0 ,
∂F

∂Y1
= 0 ,

∂F

∂X2

= 0 ,
∂F

∂Y2
= 0 , . . . . . . . . . ,

∂F

∂Xp

= 0 ,
∂F

∂Yp
= 0 (180)

It is shown in the short Appendix C that the set of 2p equations is equivalent the set of 2p equations

∂F

∂α1

= 0 ,
∂F

∂α2

= 0 , . . . . . . . . . ,
∂F

∂αp

= 0 (181a)

∂F

∂α∗
1

= 0 ,
∂F

∂α∗
2

= 0 , . . . . . . . . . ,
∂F

∂α∗
p

= 0 (181b)

in which the partial derivatives with respect to the complex variables αj a α∗
j are used. We express the function to

be minimised by the formula

F (α, λ) = λ+

p∑
i,j=1

α∗
i (Hij − λSij)αj (182)

We could take λ for a variational parameter too. By doing this, we would obtain one additional equation with a
partial derivative, but this equation would not yield any new information. Therefore, the first term (the LM alone)

18The denominator corrects for the possible improper normalisation of the function f(r⃗, α) and guarantees that the energy is evaluated
as if the function f(r⃗, α) was normalised properly.

19Its principle is nicely geometrically explained form instance in [2].
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is omitted in the literature [2]. By calculating the derivatives and markinh that they shall be zero, we obtain

∂F

∂αk

=

p∑
i=1

α∗
i (Hik − λSik)

let be
= 0 (183a)

∂F

∂α∗
k

=

p∑
j=1

(Hkj − λSkj)αj
let be
= 0 (183b)

k ∈ {1, 2, . . . p}

The let be
= 0 equations are actually two sets, each of which contains p algebraic linear homogeneous equations with

p unknowns (α∗
i alebo αj). It is convenient to express these equations in explicit matrix forms and to put the terms

with λ to their right-hand sides. For example, the second part of system (183) can be written as follows:
H11 H12 . . . . . . H1p

H21 H22 . . . . . . H2p

. . . . . . . . . . . . . . .
Hp1 Hp2 . . . . . . Hpp




α1

α2

. . .
αp

 = λ


S11 S12 . . . . . . S1p

S21 S22 . . . . . . S2p

. . . . . . . . . . . . . . .
Sp1 Sp2 . . . . . . Spp




α1

α2

. . .
αp

 (184)

It is recommended to write also the first part and in this way to find out that by its complex conjugation 20 we obtain
an equation almost the same as (184); they would differ only by λ∗ in the second equation instead of λ. But this
implies that (if it is difficult to understand, you really should write both the systems) λ∗ = λ; thus the LM λ is real.21

Equation (184) has a form of the stationary SchE in a matrix notation using the considered basis functions fi(r⃗);
see (172). From the point of view of the linear algebra, it is a generalised equation22 for the eigenvalues λ and the
eigenvectors written as columns using the quantities αi. (It would be the usual, i.e. not the generalised problem, if
the matrix S was not there, or, equivalently, if it would be the identity matrix.) After the optimisation, the Lagrange
multiplier λ acquires the meaning of the approximate eigenenergy.23 It would be exact if we used a complete
basis, which would typically mean an infinit number of the basis functions, i.e. a numerically non-tractable problem.
Practically, a finite number p is often sufficient to obtain highly accurate results.

The matrix H on the LHS of equation (184) is a matrix form of the Hamiltonian Ĥ in the considered basis; we
often use also the notion ofmatrix representation of the Hamiltonian (in given basis). Calculation of eigenvalues and
eigenvectors is called a diagonalisation of a matrix.24 The matrix S is called the overlap matrix for it expresses
how much (if at all) the basis functions overlap each other.

By moving all the terms in (184) to LHS, i.e. to arrange them as they were in (183b), we arrive at wan equation
of the form matrix times vector = zero vektor. A non-zero solution of the corresponding linear set can only exist, if
the determinant of the corresponding matrix vanishes:∣∣∣∣∣∣∣∣

H11 − λS11 H12 − λS12 . . . . . . H1p − λS1p

H21 − λS21 H22 − λS22 . . . . . . H2p − λS2p

. . . . . . . . . . . . . . .
Hp1 − λSp1 Hp2 − λSp2 . . . . . . Hpp − λSpp

∣∣∣∣∣∣∣∣ = 0 (185)

20To do this, we need to know that H∗
ik = Hki and analogously pre Sik . It follows from Theorem 2 [see (12) and (174)].

21Note also, that even F (α) itself is real according to (170) for example, which is not a surprising finding, as the numerator is an
expectation value of a hermitian operator. And it should be clear now that F (α, λ) is real too.

22We learnt the generalised eigenvalue and eigenvector problem in the subject Počítačová fyzika. We formulated it by equation A · x =
λB · x. If the matrix B is not a singular one, then this problem can be transformed to (B−1 ·A) · x = λx, that is the usual task to find the
eigenveectors and eigenvalues of matrix B−1 ·A.

23It should be fully obvious in the case of an orthonormal basis; then Sij = δij . However, the LM (after the optimisation) has the
meaning of the approximate eigenenergy even in cases when the matix S differs from the identity matrix; to understand this, realise that
we could obtain equation (184) as follows, without even using the variational principle: (i) We start from the SchE Ĥψ = λψ, by which
we define that the parameter λ is the eigenenergy. (ii) We express ψ as a linear combination of the basis functions fj(r⃗) and substitute to
the SchE. (iii) We multiply both sides of the equation by f∗k from the left and integrate. (iv) We write the system obtained in this way in
a matrix form. The system will have the form (184), i.e. the same as would be obtained from the variational principle. Hence, λ will have
the meaning of the approximate eigenenergy also in the equations following from the variational principle.

24This calculation can mathematically be expressed as a matrix operation that results in a transformation of the Hamiltonian into a
diagonal matrix diag(λ1, λ2, . . . , λp).
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It is a pth order algebraic equation, also called the charakteristic equation (of the respective square matrix), or the
secular equation. In general, it has p different roots λ ,

λ1, λ2, . . . , λp (186)

(some of then may be equal). For each λ, we then determine the set of parameters α. By doing this we obtain
the approximate solutions of the given problem (166). The lowest of the eigenvalues λ1, λ2, . . . , λp is an approx-
imate ground-state eigenenergy of the given Hamiltonian. The higher eigenvalues correspond to the approximate
eigenenergies of the excited states.

We could obtain equation (184) even without using the variational theorem as it was explained in footnote 23.
So, what good was the variational principle for us? Apart other things, it assures us that in our search for the
eigenvalues we can not underestimate the exact ground state energy; see also the comment above the title of this
section (6.1.1).

6.2 The Perturbation Method

Due to lack of time, we will not deal with the perturbation method. In quantum physics, this is generally an
extremely important method. It is used e.g. to describe atoms and molecules embedded in an external electric or
magnetic field, provided that the external field represents a weak effect compared to the effect of the internal field
of the atom or molecule. If you are interested, you can get acquainted with the perturbation method, e.g. in the
book [2] or [3]. More advanced formulations of the perturbation method (e.g. the perturbation method MP2 [7])
are used e.g. also in quantum chemistry to calculate important corrections to eigenenergies and functions obtained
by other methods (typically by the Hartree-Fock method, which is one of the variational methods).

7 Internal Angular Momentum and Internal Magnetic Dipole Moment of
Electron

In this section we will be talking about spin of an electron, which is a short term for the intrinsic internal angular
momentum of an electron.25 It will not be a detailed discussion as you should already know something about spin
from the course Quantum Mechanics. It will be a similar dense summary with an emphasis on some systematics
or order of steps, as we did in Chapter 1 on the postulates of wave quantum mechanics. In wave WM, only one
quantum mechanical particle is discussed using a wave function, and its spin is ignored. In essence, the content of
this chapter can be characterized by adding to the previous four postulates a fifth, which postulates the spin electron
and the method of its description.

7.1 Experimental Facts Confirming Existence of Spin inQuantum Mechanics

We first recall the usual angular momentum and the usual magnetic moment known from the basic physics
course: If a charged particle moves along a circle (or even along a more complicated loop), it has a corresponding
mechanical (orbital) angular momentum (AM) ℓ⃗ = r⃗× p⃗ . This movement also creates the corresponding magnetic
dipole moment (briefly magnetic moment, MM) of the magnitude µ = IS, where S is the loop area and I is the
current flowing through this thought circuit. If the charge of the particle is q and its mass m, then the relation
between its MM and its orbital AM is

µ⃗ =
q

2m
ℓ⃗ (187)

which can easily be derived [2].
Experiments show that the electron also has its intrinsic internal angular momentum and the corresponding

intrinsic or internal magnetic dipole moment. These internal moments exist regardless of whether and how the
electron moves in the space of the usual coordinates (in the “orbital” space). The internal angular momentum

25Other particles may also have their spins, however.
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of a particle is called spin. The mentioned experiments or phenomena indicating the spin of the electron can be
summarized in several groups [1], which we will only briefly list here:

1. fine structure of spectral lines

2. the Stern-Gerlach experiment

3. gyromagnetic phenomena: experiments of Einstein and de Haas

4. magnetooptic phenomena: the anomalous Zeeman effect

The existence of a quantum number associated with the internal state of an electron was postulated in 1925 by W.
Pauli based on the study of atomic spectra. However, it was not he who introduced the term spin. In the same
year, a little later, Kronig, Uhlenbeck, and Goudsmit interpreted this new quantum number as a manifestation of
the momentum of the electron and introduced the term spin. According to the KUG hypothesis, a projection of this
AM to a chosen axis can acquire two values only: ±h̄/2. In experiments of the type SG or EdH, it was also possible
to measure the magnetic moment µ⃗s corresponding to the spin and the ratio between µ⃗s and the spin AM s⃗. It was
found that [compare to (187)]

µ⃗s =
q

me
s⃗ , where q = −e, me = the electron mass (188)

So, this (gyromagnetic) ratio is twice of the gyromagnetic ratio for the orbital AM. (It turns out that the latter ratio
is only approximatelly twice of the former one.) By the “chosen axis” we usually consider the z axis. Therefore, we
write that the projection of electron spin on the z axis is

sz ∈
{
+
h̄

2
,−h̄

2

}
(189)

As in QM we many times use the atomic units in which h̄ = 1, we then say that the electron spin acquires half-
integer values. If we say that electron spin is 1/2, we mean the magnitude of the spin projection in the units of
h̄.

The relation between the MM and AM is often expressed with the aid of the Bohr magneton µB:

µB =
eh̄

2me
(190)

The mechanical (orbital) moment then becomes

µ⃗ = −gL µB
1

h̄
ℓ⃗ (191)

where gL = 1 is the so-called orbital g-factor. Analogously for the spin AM, we express

µ⃗s = −gS µB
1

h̄
s⃗ (192)

where gS ≈ 2 is the spin g-factor.
The theory and a better understanding of spin in the framework of QMwas develped by Pauli in 1927. While spin

had to be introduced into the standard QM by the postulating based on experimental facts (and Pauli significantly
contributed to this – the Pauli equation from 1927 is especially known), in relativistic QM developed by Dirac in
1928, spin follows directly from theory. Spin cannot be satisfactorily interpreted as the rotation of a particle about
its own axis.
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7.2 Eigenvalues and Eigenvectors of Spin Operators

In Section (4.5), we talked about the theoretical description of AM and postulated that any angular momentum
in QM will be defined so that the relevant operators must satisfy the commutation relations (49). Using this, we
obtained the eigenvalues of the AM operators according to equations (68) and in addition the knowledge that the
values of the quantum number j can only be non-negative integers or half-integers. We also found out that if, for
some QM system, the highest AM projection on the z axis is jh̄, then the number of the different projections is
2j + 1. The whole procedure of that section could have been understood purely mathematically. But even in this
early stage of our study we saw its physical realisation: the mechanical (i.e. orbital) angular momentum in QM.
That time we did not know any physical realisation of a half-integral j. Now, knowing that the spin AM exists and
acquires the two values of the projection, and that they are half-integral, we begin to see that the mathematical
theory of section (4.5) will perfectly suit us to describe electron spin. It is sufficient to take j = 1/2 = s. Thus, once
equations (68) are made specific for the case of electron spin (and with the explicit writing out of the constant h̄),
they become

ŝ2
∣∣∣∣12 ,ms

〉
=

3

4
h̄2
∣∣∣∣12 ,ms

〉
ŝz

∣∣∣∣12 ,ms

〉
= msh̄

∣∣∣∣12 ,ms

〉 (193)

ms ∈
{
−1

2
,+

1

2

}
These equations also define our notation that will be used below. Instead of the more generally used symbol j, we
will be using s = 1/2 to denote the spin of one electron. We say that:

ms = +
1

2
. . . . . . spin hore

ms = −1

2
. . . . . . spin dole

Thus, only two linearly independent common eigenvectors of the operators ŝ2 a ŝz exist: the vectors∣∣∣∣12 , +1

2

〉
,

∣∣∣∣12 , −1

2

〉
(194)

denoting “spin up” and “spin down”.

7.3 Pauli Matrices

In quantum mechanics, it often proves practical to use matrix formalism. In it, instead of the notation (194), we
use two-component column vectors: ∣∣∣∣12 , +1

2

〉
→ χ̃+ =

(
1
0

)
(195a)∣∣∣∣12 , −1

2

〉
→ χ̃− =

(
0
1

)
(195b)

It is a certain particular representation of vectors (194). Then it is natural to expect that the operators ŝ2 and ŝz ,
which enter equations (193), will also have some specific matrix representation (expression), using 2 × 2 matrices.
And of course, a matrix representation will be associated to the operators ŝx and ŝy as well. We denote the matrix
expressions for the operators ŝx, ŝy and ŝz by symbols sx, sy, sz . If we write these matrix expressions (at least using
the symbols), then it becomes easy to construct the matrix expression of the operator ŝ2:

s2 = s2x + s2y + s2z (196)

We have the folowong requirements for these matrices:
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1. They must be 2× 2 (which we already said).

2. They must be hermitian (because they represent hermitian operators).

3. The (common) eigenvectors of the matrices s2 a sz must be column vectors χ̃+ a χ̃− defined by formulae (195a),
(195b).

4. The have to satisfy commutation relations (49) which are generally valid for AM operators.

Doing an explicit calculation, one can be convinced that these requirements are fulfilled by the followong matrices:

sx =
h̄

2
σx , sy =

h̄

2
σy , sz =

h̄

2
σz (197)

where σx, σy, σz are Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 − i
i 0

)
, σz =

(
1 0
0 −1

)
(198)

The distribution of their matrix elements depends partiall on our definition of the ordering of the basis vectors. The
ordering is by convention such as in (194), i.e. the first vector is the one with the positive spin, the second with the
negative spin. The Pauli matrices themselves satisfy the commutation relations

[σx, σy] = 2 iσz a cyklicky ďalšie. (199)

The algebra of Pauli matrices can be read in more detail e.g. in the books [2, 3]. For example, the following identity
holds:

σ2
x = σ2

y = σ2
z =

(
1 0
0 1

)
(200)

Then we obtain
s2 =

3

4
h̄2
(

1 0
0 1

)
(201)

[See also the upper equation in (193).]

7.4 Wavefunction of a Spin 1/2 Particle

In the postule no. 1 of the wave quantum mechanics, we introduced the wave function. Now we have to gener-
alise it to be able to describe also the electron spin [1]. We consider one particle whose spin value can be generally
indefinite, i.e. a superposition of the spin-up (+1/2) and spin-down (−1/2) state. We shortly call it a state with
uncertain projection of the spin (on a chosen axis which we denote as z). However, the whole thing is more com-
plicated, because the particle has not only the spin degree of freedom, but also the translational degrees of freedom
(the usual spatial coordinates x, y, z, i.e. the “orbital” degrees of freedom); hence the wave function must depend
not only on the spin, but also on the spatial coordinates. It should also be noted that even in the case of an indefinite
spin, when measuring the projection, we acquire only the value +1/2 or −1/2.26 The uncertainty lies in the fact
that the result of an individual measurement on a state with indefinite spin is random, it cannot be predicted.27 If we
found out by the detection device that the particle has spin+1/2, then the space-dependent wave function would be
some, let’s denote it φ+(r⃗, t). If we found spin−1/2, then the spatially dependent wave function would be φ−(r⃗, t).
There is no reason to assume that the spatial part should necessarily be the same in the two cases (although it is
quite often the case). The corresponding probability densities are:

ρ+(r⃗, t) = |φ+(r⃗, t)|2 , ρ−(r⃗, t) = |φ−(r⃗, t)|2 (202)

The total probability density to find the particle at time t at point r⃗ is

ρ(r⃗, t) = ρ+(r⃗, t) + ρ−(r⃗, t) (203)
26This was discussed in the 2nd postulate of QM, although not specifically in relation to spin.
27However, we can know in advance the probability of measuring a particular value; this is if we know the wave function of the measured

state.
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and the equality ∫
ρ(r⃗, t) d3r = 1 (204)

must hold. To describe the whole wave function, we introduce the 2× 1 matrix

φ(r⃗, t) =

(
φ+(r⃗, t)
φ−(r⃗, t)

)
(205)

which is called spinor and it can also be expressed by

φ(r⃗, t) = χ̃+φ+(r⃗, t) + χ̃−φ−(r⃗, t) (206)

where χ̃± are column vectors (195). It can be easily verified that this matrix satisfies

φ†(r⃗, t)φ(r⃗, t) = ρ+ + ρ− = ρ (207)

By this paragraph, we have actually generalised or adapted the first postulate of QM so that we can also describe a
particle with spin 1/2.

However, we will not deal with the description of spin using spinors further, because extending this formalism to
the description of many-electron systems would be impractical, at least for our purpose. Instead of spinors, we can
use a wave function, that will have a spin coordinate as an argument, which we will talk about in the next sections.

8 Systems of Many Electrons

In this section we will consider mainly atoms and molecules with many electrons. We have reviewed the pos-
tulates of QM in chapter 1. For simplicity and brevity, we introduced them for one-particle systems. Therefore, it is
now necessary to extend and complete them so that we can use QM for systems with many electrons and correctly
take into account the spin of electrons.

8.1 Generalisation of the 1st Postulate: Many-Particle Wave Function28

Ψ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN ; t) (208)
is the wave function of the N -particle system.

|Ψ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN ; t)|2 d3r1d3r2 . . . d3rN (209)

is the probability that at time t, particle 1 is found around the point r⃗1 in the volume element d3r1 and having the
spin σ1 and simultaneously particle 2 is found around the point r⃗2 in the volume element d3r2 and having the spin σ2
etc. The expression |Ψ| (without the volume elements) is the corresponding probability density. It is found practical
to define the meaning of the many-particle wave-function as it stated above even if we have a system of identical
particles for which we do not really know which of them is the 1st one, which is the 2nd etc.

Normalisation: ∑
σ1=±1

∑
σ2=±1

· · ·
∑

σN=±1

∫
d3r1d3r2 . . . d3rN |Ψ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN ; t)|2 ≡

≡
∫

dx1dx2 . . . dxN |Ψ(x1, x2, . . . , xN)|2 = 1

(210)

xi is a short notation for the spatial and spin coordinates together, i.e. (xi) ≡ (r⃗i, σi). For even more brevity, we
have introduced the formal integration sysmbol over xi. It needs to be understood as including summation over
the spin coordinte σi; it follows directly from the introduced notation. The particles assumed in this section need
not necessarilly be electrons, neither have to be identical. But the formulae with the summations over spins assume
spin 1/2. We will now introduce examples of particular forms of the wave function.

28In English-written literature, the term many-body wave function is sometime being used.
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8.1.1 One Particle (N = 1)

An elementary form of one-particle wave function dependent on both spatial and spin coordinate can be ex-
pressed as a product of spatial and spin function:

Ψ(r⃗, σ) = φ(r⃗)χ(σ) (211)

where φ(r⃗) is some spatially dependent function and χ(σ) a spin-dependent one. If this is really to be a quite simple
form of wave function, then the spin-dependent part should either represent spin up or spin down state, and not a
linear combination of spins. Therefore, the elementary (and most important) examples of the function χ(σ) are the
following particular functions:

χ+(σ) =

{
1, σ = +1

0, σ = −1
, χ−(σ) =

{
0, σ = +1

1, σ = −1
(212)

χ+(σ) is the eigenfunction of operator ŝz for the eigenvalue +h̄/2. Analogously, χ−(σ) corresponds to the eigen-
value −h̄/2. Thus, χ+(σ) a χ−(σ) are one-particle spin wave functions denoting states with spin up and down,
respectively. We were using similar symbols (χ̃+, χ̃−) in the matrix (spinor) formalism of section 7.3, but here we
are not using the formlism. To distinguish the notation, we use the letters χ without the tildes here, although they
physically represent the same as do expressions (195). Note that the functions (212) involve both the spin coordinate
(σ) and the spin index (+ or −), that is the spin quantum number. This is how it should be when expressing spin-
dependent eigenfunctions: 29 both the spin coordinate and spin quantum number should appear in their notation.
However, if a spin-dependent function were not an eigenfunction of the operator ŝz , then a particle in such a state
would not have a sharp (i.e., definite) value of its spin projection on the z-axis, and then the spin index+ or− could
not be ascribed to such a function.

8.1.2 Two Particles (N = 2)

Now we are able to write elementary examples of two-particle wave functions as follows:

Ψn1,ν1;n2,ν2(r⃗1, σ1, r⃗2, σ2) = φn1(r⃗1)χν1(σ1) φn2(r⃗2)χν2(σ2) (213)

where ν1, ν2 are the spin indices (quantum numbers) + or − . The indices n1, n2 are quantum numbers (or
sets of quantum numbers) of the orbital, i.e. of the spatially dependent functions φn1(r⃗1), φn2(r⃗2). Although the
wave function just written cannot yet represent a physical state of a pair of electrons, because it does not meet
the antisymmetry requirement, which we will learn later. However, by a linear combination of at least two wave
functions of type (213), we will easily be able to construct an antisymmetric wave function. However, the form (213)
could represent e.g. the wave function of the proton-electron system (if we consider the proton as a QM particle).
30

8.2 The 4th Postulate: Schrödinger Equation for the Many-Particle Wave Function

ih̄∂Ψ
∂t

= ĤΨ (214)

Thus, this equation has the same form as it would have for one particle. Therefore, the time-independent SchE will
also the form as for a single particle.

8.3 System of Identical Particles

Quantum-mechanical particles of the same kind are indistinguishable.
29Eigenfunction of the operator ŝz , possible of some other.
30We will approximate protons by classical particles in this course. Very often this is a completely sufficient approximation.
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This is also a postulate, consequencies of which are confirmed by experiments. Wewill learn about the consequences
of this postulate later and will work with it in this subsection as well. You can see a more detailed discussion of
indistinguishability, e.g. in [2], beginning of chap. 15 or in [3], beginning of chap. XIV.

Consider a general many-body wave function [1]

Ψ(x1, x2, . . . , xN ; t) (215)

The particles even need not be electrons at this stage of our exposition. We only assume them to be of the same kind,
that is identical particles. As we have stated above, in quantum physics we believe that they are indistinguishable.
It means that if we make an interchange of any two of the particles (in the mathematical formalism, this is expressed
by interchange of the corresponding coordinates), nothing must change physcially. Therefore, the wave function
may at most change its phase upon such interchange of the particles. We therefore demand the following:

Ψ(x1, . . . , xj, . . . , xi, . . . , xN ; t) = e iα Ψ(x1, . . . , xi, . . . , xj, . . . , xN ; t) (216)

where α is some real constant; we will soon see what specific values it can acquire.
It turns our convenient to introduce an operator for formal description of the interchange of the particles i and

j. We define ot by the equation
P̂ij F (xi, xj) = F (xj, xi) (217)

in which we started to use the more concise notation expressing only the coordinates of the electrons to be ex-
changes. F can be arbitrary function of the considered arguments (possibly also of time); in this definition, it need
not yet be the wave function Ψ. Even a higher degree of brevity is achieved by denoting the arguments using
numbers only, i.e.

F (1, 2, . . . , N) (218)

and the action of the operator is
P̂ij F (i, j) = F (j, i) (219)

From the point of view of combinatorics, this operator make a permutation Using the operator, we can now rewrite
equation (216) as follows:

P̂ijΨ(i, j; t)︸ ︷︷ ︸
Ψ(j, i; t)

= e iα Ψ(i, j; t) (220)

We see that a physically correct (or realistic [2])wave function of a system of identical particles must be an eigenfunction
of the particle interchange operator.

8.4 Eigenvalues and Eigenfunctions of the P̂ij operator

P̂ijf(i, j) = λf(i, j) (221)

Let us act by the operator P̂ij on this equation from the left. We will obtain two occurrencies of the operator on the
LHS of the equation which will return the indices i and j to their original order:

f(i, j) = λP̂ijf(i, j) = λ2f(i, j)

Therefore
λ = ±1 (222)

Eigenfunctions for λ = +1 are those that obey the property f(j, i) = f(i, j). These are called symmetric functions.
Eigenfunctions for λ = −1 are those that obey the property f(j, i) = −f(i, j). These are called antisymmetric
functions.

The particle exchange operator is linear. It is also a hermitian one since it has real eigenvalues. And, importantly,
we are now already able to formulate the findings at the end of the last section more specifically: A physically
correct wave function of a system of indentical particles has to be either symmetric or antisymmetric upon
exchange of the coordinates.
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8.5 Commutation [Ĥ, P̂ij] = 0, Bosons, Fermions, Permutation Symmetry of aWave Func-
tion

The Hamilton operator corresponds to a physical quantity; therefore it will not change upon interchange of two
indetical particles:

P̂ijĤ = Ĥ (223)

This is a consequence of the postulated indistinguishability of the particles. The last equation written represents the
effect of the operator P̂ij on another operator (Ĥ). Now act by the operator P̂ij on the function ĤF (i, j), where
F (i, j) is any function of multiple spatial and spin coordinates. Again, we write explicitly only those of them that
are interchanged by the given operator.

P̂ij{ĤF (i, j)} = Ĥ{P̂ijF (i, j)}

because the particle interchange operator will simply “cross” over the Hamiltonian and will not do anything with
it. For this holds for arbitrary function F , it implies that

[Ĥ, P̂ij] = 0 (224)

We have learnt in secion 3.1 what are consequences of commutation of two operators: a complete set of eigen-
functions for each of the operators can be constructed such that all these functions are eigenfunctions of both the
operators (Theorem 7). So by meeting the requirement that the wave function be an eigenfunction of the particle inter-
change operator, we do not lose the ability to construct this function so that it is also an eigenfunction of the Hamiltonian
of the system.

Now a question arises: is the many-particle wave function symmetric or antisymmetric upon interchange of
some of its two coordinates? Available data and analysis show that [2, 3, 4]:

A system of identical bosons (particles of an integer spin) is always described by a symmetric wave
function. A system of identical fermions (particles of a half-integer spin) is always described by an
antisymmetric wave function.

This statement must be considered to be an independent postulate in non-relativistic QM (in addition to the pos-
tulates we have formulated in section 1). It applies also for time-dependent function, not only for stationary ones.
These properties of wave functions can be proved theoretically in the quantum field theory. (I.e., they are just some
derived facts, not postulates, in the quantum field theory.) Using an explicit formula, the antisymmetry is expressed
by the relation The antisymmetry is

Ψ(j, i; t) = −Ψ(i, j; t) (225)

8.6 The Pauli Principle

Let us now write equation (221) for the eigensystem of the operator in more detail and by writing the most
general wave function possible, i.e. also time-dependent, to see that the Pauli principle applies very generally, not
only to stationary states.

P̂ijΨ(xi, xj; t) = λΨ(xi, xj; t) (226)

It means that in this section we consider a wave function either symmetric or antisymmetric; only these two kinds
can be eigenfunctions of P̂ij . See section 8.4. And it also means (according to the postulate at the end of the
previous section) that we consider a wave function of a system of identical particles, either bosons or fermions. We
now expand the N -particle wave function Ψ(xi, xj; t) in some complete set of orthogonal functions as follows (see
Appendix A.2):31

Ψ(xi, xj; t) =
∑
ni

∑
nj

Cninj
(x̄; t)ϕni

(xi)ϕnj
(xj) (227)

31It was explained in the lecture too: we first imagine the function Ψ(xi, xj ; t) as dependent on single variable only, the other variables
having some fixed values. Etc.
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where x̄ is the set of coordinates x1, . . . , xN excluding the coordinates xi, xj . ni, nj are summations indices which
also represent quantum numbers. Typically, they are composite indices.

For example, if we were going to express a state of electrons in an atom by the wave function Ψ(xi, xj; t), the
single-particle basis functions ϕni

(xi)would then be eigenfunctions of the hydrogen atom or similar functions; thus,
the simple symbol ni would in fact mean

ni → (ni, li,mi, νi)

where ni ∈ N on the RHS is the principal quantum number, li ∈ {0, 1, . . . , ni − 1} is the orbital quantum number,
mi ∈ {−li,−li+1, . . . , li} je magnetické kvantové číslo and νi is the spin quantumnumber (by convention, its values
can be ±1/2 or ±1, or it is only denoted by the symbols +, −). We have discussed the spin quantum numbers in
sections 8.1.1 and 8.1.2.

We can interpret expression (227) as follows: assuming that the particles with the exception of the ith and jth one
are at positions denoted by the multi-coordinate x̄, Cninj

(x̄; t) is the probability amplitude32 to find the particle i in
the state ϕni

and at the same time to find the particle j in the state ϕnj
. A more detailed and elementary explanation

of the meaning of expansion (227) is explained in Appendix A.2. Now, substitute expansion (227) into(226); we can
omit the arguments in the coefficients Cninj

(x̄; t) for the sake of brevity.

P̂ij

∑
ni

∑
nj

Cninj
ϕni

(xi)ϕnj
(xj) = λ

∑
ni

∑
nj

Cninj
ϕni

(xi)ϕnj
(xj)

We apply the permutation operator in the LHS.

LHS =
∑
ni

∑
nj

Cninj
ϕni

(xj)ϕnj
(xi)

In next step, we rename the summation indices: ni ↔ nj (which is a trivial operation for the symbol used as a
summation index can be arbitrary).

LHS =
∑
nj

∑
ni

Cnj ni
ϕnj

(xj)ϕni
(xi)

Let us now equate the LHS with the RHS. In doing so, we write the summation symbols
∑

in the same order as
they are on the RHS; the result does not depend on the order.∑

ni

∑
nj

Cnj ni
ϕnj

(xj)ϕni
(xi) = λ

∑
ni

∑
nj

Cninj
ϕni

(xi)ϕnj
(xj)

From this, we obtain the equation∑
ni

∑
nj

(
Cnj ni

− λCninj

)
ϕni

(xi)ϕnj
(xj) = 0 , ∀xi, xj

We multiple this equation by functions ϕ∗
mi
(xi) a ϕ∗

mj
(xj) from the left side and subsequently we do integration

over the spatial coordinates and summation over the spin coordinates. Employing the orthogonality∫
ϕ∗
m(x)ϕn(x) dx ∝ δm,n (228)

(in fact, there is the summation over the spin coordinate but we denote it all using just the integration symbol for
brevity) we obtain the set of algebraic equations33

Cnj ni
= λCninj

(230)
32If we had two particles only in the system, then Cn1 n2(x̄; t) would be a true probability amplitude (amplitude of probability). But

since we aim to consider an N -particle system, we introduced a little of technical and interpretive complication to our proof of the Pauli
principle, in particular, we had to say “assuming that the particles with the exception of …”.

33From the mentioned orthogonality of the one-particle functions, the orthogonality for the two-particle functions also follows:∫
ψ∗
M (xi, xj)ψN (xi, xj) dxi dxj ∝ δMN (229)

with ψM (xi, xj) = ϕmi(xi)ϕmj (xj), and analogously ψN (xi, xj). M = (mi mj),N = (ni nj) are composite (double)indices. Ordering
of their components is unimportant.
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It means that the expansion coefficients Cninj
are either symmetric or antisymmetric with respect to the exchange

od their indices. This could already be deduced directly from expansion (227).
What is the probability that at time t both particle i and particle j will be in the same state ϕn ? To explore it,

let us look at the coefficients with the same indices in expansion (227), that is ni = nj . According to (230), the case
of ni = nj = n implies

Cnn = λCnn (231)

For λ = 1 (bosons), it is an identity. For λ = −1 (fermions) we obtain Cnn = 0. It means that

probability to find two fermions to occupy the same single-particle state ϕn(x) is vanishing, which
is the statement of the Pauli exclusion principle.

In other words, two fermions cannot occupy the same individual quantum state [3]. For example, if an electron in an
orbital around an atomic nucleus is characterised by the quantum numbers n, l,m and, in addition, by the projection
of its spin on the z axis (which can be understood as a spin quantum number and denoted as ms or ν), then any
state of any other electron (in the same atom) must differ in at least one of the four quantum numbers. (The spin
quantum numbers have been explained in sections 8.1.1 and 8.1.2.)

In what follows, we will mostly discuss not a general wave function (which can also be time-dependent) but
stationary states only, i.e. eigenfunctions of the Hamiltonian.34

8.7 Wave Function of a Two Electron System

The best known and most frequently met representants of two-electron systems are the helium atom and the
hydrogen molecule H2 [8]. We will work out the helium atom in an exercise and will calculate its ground-state
energy using a simple version of the variational method with one parameter (see Appendix D). We obtained or will
obtain the result – especially the energy of its ground state – which has a remarkable quantitative accuracy given
the simple analytically manageable method we use for it. In this section, we will focus on better understanding
the wave function of two-electron systems, and not only the wave function of the ground state, but also the excited
states.

It is worth saying in advance that the exact eigenfunctions of any two- and many-electron interacting system can-
not be expressed analytically. The obstacle is caused by the Coulomb interaction of electrons with each other, which
is a difficult problem when examining the electronic structure. In other words, we cannot solve the corresponding
Schrödinger equation (neither stationary nor time-dependent) exactly for such a system. Numerically, however, at
least the ground state of the two-electron system could be found with virtually any accuracy.

To understand the electronic structure, it is necessary to know at least qualitatively a correct analytical form of
the wave function. We propose the wave function of helium (also of a similar ion, but briefly speaking only helium)
expressed in the form of the product ψ(r⃗1, r⃗2) = φ(r⃗1)φ(r⃗2) of the hydrogen orbitals. We have done it so in the
exercise; see (D.4). Let us now examine particular forms of two-electron wave functions in the context of the general
requirements that a correct wave function has to meet.

8.7.1 Independent Electrons

At first, we have to realise that the factorised form φ(r⃗1)φ(r⃗2) [eq. (D.4)] cannot be an exact eigenfunction of
the helium Hamiltonian (D.1). To make sure of this, consider a two-electron Hamiltonian that can be written as a
sum of commuting single-particle operators as follows:

Ĥ ind = ĥ1(r⃗1) + ĥ2(r⃗2) (232)

It is therefore the sum of mutually independent operators, because the individual variables (coordinates) are separ-
ated. Assume we know the exact eigenfunctions of these one-particle Hamiltonians:

ĥ1(r⃗)φ1(r⃗) = E1φ1(r⃗) , ĥ2(r⃗)φ2(r⃗) = E2φ2(r⃗) (233)
34Determination of eigenenergies of a Hamiltonian is the principal task in the electronic structure theory and also in this course.
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Let us now construct the factorised function

ψ(r⃗1, r⃗2) = φ1(r⃗1)φ2(r⃗2) (234)

and calculate what the Hamiltonian Ĥ ind will do with it:

Ĥ indψ(r⃗1, r⃗2) =
[
ĥ1(r⃗1) + ĥ2(r⃗2)

]
φ1(r⃗1)φ2(r⃗2) = E1φ1(r⃗1)φ2(r⃗2) + E2φ1(r⃗1)φ2(r⃗2)

thus
Ĥ indψ(r⃗1, r⃗2) = (E1 + E2)ψ(r⃗1, r⃗2) (235)

The above procedure can be reversed in its sequence (albeit in a little more complicated way) and thus it can be
shown that if some product function φ1(r⃗1)φ2(r⃗2) is an (exact) eigenfunction of some Hamiltonian dependent on
the variables r⃗1 and r⃗2, then the Hamiltonian can be expressed as the sum of type ĥ1(r⃗1) + ĥ2(r⃗2). So we state:

Theproduct (factorised) wave function (234) is the (exact) eigenfunction of Hamiltonian (232) having separated variables.
The energy of such a two-particle system is the sum of the energies of the individual particles (here electrons).

Two electrons described by the Hamiltonian of the type ĥ1(r⃗1) + ĥ2(r⃗2) are mutually independent, they do not
affect one another in any way. However, the product wave function cannot be an exact eigenfunction of the helium
Hamiltonian, because this cannot be written as a sum of the type ĥ1(r⃗1) + ĥ2(r⃗2). The interaction term Ŵ =
1/|r⃗1 − r⃗2|, which cannot be decomposed into a separated form, prevents this. Thus, in our exercise, we actually
found (or will only find) an exact ground state of some effective Hamiltonian of the form

Heff = −1

2
∇2

1 −
1

2
∇2

2 −
Zeff

r1
− Zeff

r2
(236)

only (expressed in the atomic units), where Zeff expressed by (D.44) is the effective nuclear charge calculated by
the optimisation. As we can see, Heff, is just a particular example of the separated form Ĥ ind. Thanks to especially
the mentioned optimisation, we were able to consider the factorised wave function of type φ1(r⃗1)φ2(r⃗2) as at least
approximately a good eigenfunction of the helium Hamiltonian. If we did not optimise anything, then the electron
shell of such a helium would only be an addition of two electron shells of the helium cations on each other, without
any manifestation of the electron interaction. Since we have done the optimisation, the electrons in such a helium
model are not considered to be completely independent of each other from a physical point of view. Their interaction
is included in such a way that the charge of the nucleus in such a model is (effectively) smaller than the actual charge
of the heliumnucleus. It is an effect of the partial screening of the nucleus field by the other electron. Mathematically,
however, the form of the wave function remains at a simple level of independent electrons, which is of course very
practical. This is used in mean-field methods, where an electron moves as if without interacting with the other
electrons in an average field generated by the nuclei and the other electrons. In the context of electronic structure,
these are the Hartree method and also the Hartree-Fock method, which we will talk about later.

8.7.2 Antisymmetry of Wave Function

We have learnt in section (8.5) that a wave function for a system of identical fermions must be antisymetric
upon interchange of the coordinates of any two fermions, i.e. it has to switch its sign. The product wave function
we used for the helium atom is obviously not of this kind. We used φ1 = φ2 = φ for the ground state of helium
(thus both electrons occupying the same atomic orbital). Such a function is symmetric; therefore we now denote it
as ψS(r⃗1, r⃗2):

ψS(r⃗1, r⃗2) = φ(r⃗1)φ(r⃗2) (237)
How do we deal with the problem that it is not antisymmetric? We realise that we have not considered any spin in
whis wave function. A complete form of a wave function has to include spin too; we use the spin coordinates for
this. Only such a complete (total) wave function must be antisymmetric. In addition to this property, we want it to
express that two electrons (e.g., in a helium atom or in an H2 molecule) occupy the same spatial orbitals, but differ
in their spins.

If we express the total wave function in the form

Ψ(r⃗1, σ1, r⃗2, σ2) = ψS(r⃗1, r⃗2)χA(σ1, σ2) (238)
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where χA(σ1, σ2) is some antisymmetric function of the spin coordinates, then also the product (238) will be an
antisymmetric function. Even without a deeper reasoning (we will do it later), it is so far acceptable that the anti-
symmetric spin wave function can be expressed as follows:

χA(σ1, σ2) =
1√
2
[χ+(σ1)χ−(σ2)− χ−(σ1)χ+(σ2)] (239)

where χ+(σ) a χ−(σ) are one-particle spin wave functions denoting states with spin “up” and “down” [see (212)]:

χ+(σ) =

{
1, σ = +1

0, σ = −1
χ−(σ) =

{
0, σ = +1

1, σ = −1
(240)

The multiplication constant 1/
√
2 in the wave function is to ensure the proper normalisation:

⟨χA|χA⟩ =
∑

σ1=±1

∑
σ2=±1

χ∗
A(σ1, σ2)χA(σ1, σ2) = 1

In this way we have solved the problem that the purely spatial (i.e. orbital) wave function of helium, as we had
proposed it by formula (237), did not obey the anisymmetry requirement. The total wave function (238) cannot be
expressed as a product of two functions, one of which would depend on the coordinates of the first electron only,
the other on the coordinates of the second. Thanks to the form (237) we can say that in state (238), both electrons
occupy identical spatial orbital, but differ in the projections of their spins on the z axis. Consequently, the Pauli
principle, which says that two electrons cannot occupy the same one-particle state, is satisfied as well. Ours differ
in their spins which suffices to satisfy the Pauli principle.

It is necessary to realise that functions not obeying the antisymmetry principle can also be eigenfunctions of
Hamiltonian Ĥ ind [eq. (232)] (and also of other Hamiltonian, see below). For instance, a mathematically correct
eigenfunction is also the (purely spatial-dependent) function (234), which is neither symmetric nor antisymmetric.
If we multiplied it by any spin-dependent function, such total wave function would still be a mathematically correct
eigenfunction of Hamiltonian (232). However, we have learnt in section 8.5 that a correct total (both spatial and
spin-dependent) wave function for a system of electrons must be antisymmetric. Of the many mathematically
correct eigenfunctions of the Hamiltonian, only those that satisfy the antisymmetry requirementm, are physically
significant (correct).

8.7.3 Clasification of States in the Helium Atom

At the the end of the last section, we made the statement in the sense that whatever is the spin part of the
total wave function, this wave function will still be a mathematically correct eigenfunction of the Hamiltonian Ĥ ind

[eq. (232)], assuming of course that the spatial part ψ(r⃗1, r⃗2) is mathematically correct. This holds not only for Ĥ ind;
consider the exact non-relativistic Hamiltonian of the helium atom or like ion (shortly just helium):

Ĥ = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
1

4πε0

Ze2

r1
− 1

4πε0

Ze2

r2
+

1

4πε0

e2

|r⃗1 − r⃗2|
(241)

Let ψ(r⃗1, r⃗2) be one of its purely spatial eigenfunctions:

Ĥψ(r⃗1, r⃗2) = Eψ(r⃗1, r⃗2)

(Of course, this is not a factorised function.) Write the total wave function as follows:

Ψ(r⃗1, σ1, r⃗2, σ2) = ψ(r⃗1, r⃗2)χ(σ1, σ2) (242)

Ψ is an eigenfunction of Ĥ with arbitrary χ(σ1, σ2), for the non-relativistic helium Hamiltonian [eq. (241)] does not
dependent on spin variables. Such a Hamiltonián (and also any other that is independent of spin variables) in no
way effects on the purely spin function χ. To be convinced explicitely about it, calculate as follows:

ĤΨ(r⃗1, σ1, r⃗2, σ2) = Ĥ[ψ(r⃗1, r⃗2)χ(σ1, σ2)] = χ(σ1, σ2)Ĥψ(r⃗1, r⃗2) = EΨ(r⃗1, σ1, r⃗2, σ2)
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that is, Ψ(r⃗1, σ1, r⃗2, σ2) is really the eigenfunction.
And if ψ(r⃗1, r⃗2) were an only approximate purely spatial eigenfunction of Ĥ , then Ψ(r⃗1, σ1, r⃗2, σ2) would be an

approximate total eigenfunction.
However, the independence of a Hamiltonian of spin coordinates also means that such a Hamiltonian commutes

with any spin operator. Realise that this holds not only for the simplified Hamiltonian Ĥ ind [eq. (232)], but also, for
example, for the exact non-relativistic heliumHamiltonian Ĥ [eq. (241)] containing the electron-electron interaction
contribution. For example, the identities

[Ĥ, Ŝz] = [Ĥ, Ŝ2] = 0 (243)

hold, in which
ˆ⃗
S = ˆ⃗s1 + ˆ⃗s2 (244)

is the total spin angular momentum (AM) operator of a two-electron system and

Ŝ2 = (Ŝx)
2 + (Ŝy)

2 + (Ŝz)
2 (245)

is the definition of the operator of the square of the total spin AM of the system. By a simple explicit calculation, it
can be convinced that this operator has also the from

Ŝ2 = (ŝ1 + ŝ2)
2 (246)

which we intuitively expect too. As we have seen in previous lectures, the pair of AM operators describing the pro-
jection on the z-axis and the square of AMmagnitude are especially important. Therefore, in accordance with (243),
it is convenient and practical to construct the eigenfunctions of the spin-independent Hamiltonian so that they are
also eigenfunctions of the operators Ŝz and Ŝ2. 35

Let us, therefore, verify whether the wave function Ψ = ψSχA [eq. (238)] including the anisymmetric spin
function (239) is an eigenfunction of the operators Ŝz and Ŝ2. (Now begins the “deeper reasoning” that we have
mentioned in sec. 8.7.2, but we skipped it.) The orbital part of the wave function will not do anything wrong in this
verification, because it does not contain spin degrees of freedom (spin coordinates) and we simply “swap” the spin
operator over it, as we will see below. First, calculate

ŜzΨ(r⃗1, σ1, r⃗2, σ2) ≡ ŜzΨ(1, 2) = Ŝz [ψS(1, 2)χA(1, 2)] = [prehodíme] = ψS(1, 2)ŜzχA(1, 2)

If the equality (not verified yet) ŜzχA(1, 2) = λχA(1, 2), would be true, then we would get ŜzΨ(1, 2) = λΨ(1, 2),
that is the functionΨwould be an eigenfunction of the operator Ŝz regardless of the form of the purely orbital function
ψS. Hence, it is sufficient to check whether the spin function χA(1, 2) is an eigenfunction of the operator Ŝz . If this
is so, then the total wave function Ψ(1, 2) is an eigenfunction too. So, do the verification:

ŜzχA(1, 2) =
1√
2
(ŝ1z + ŝ2z) [χ+(1)χ−(2)− χ−(1)χ+(2)] =

=
1√
2

{[
h̄

2
χ+(1)χ−(2)−

h̄

2
χ+(1)χ−(2)

]
−
[
−h̄
2
χ−(1)χ+(2) +

h̄

2
χ−(1)χ+(2)

]}
= 0 (247)

35And this is not all, because proper eigenfunctions must also be eigenfunctions of the particle exchange operator, see (217) and the end
of the relevant paragraph. In addition, the spin-independent Hamiltonian of the atom also commutes with the operators of the total orbital
angular momentum, which for helium are the Cartesian components of the operator

ˆ⃗
L =

ˆ⃗
ℓ1 +

ˆ⃗
ℓ2

and also the important operator L̂2. Therefore, the correct and practically expressed eigenfunction of the spin-independent Hamiltonian
should also be an eigenfunction of the operators L̂z and L̂2. Fortunately, we are already familiar with this, at least in the case of the hydrogen
atom, but we see that things get complicated. We would have an even more complex task if we included the spin-orbital interaction in the
Hamiltonian, i.e. that the Hamiltonian would also depend on the spin coordinates. There, in general, the Hamiltonian of an atom would
commute with the total angular momentum Ĵ = L̂ + Ŝ and with its square Ĵ2, but not with the orbital or spin moment separately. We
return to the commutation with Ĵz and Ĵ2 because this applies to an atom in general. These problems are easier to study by examining the
invariance of the Hamiltonian under different rotations in orbital and spin space [2]. The angular momentum operators are also operators
expressing rotations in orbital or spin space. However, we do not have time to deal with this.
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Thus, the two-electron spin function χA(1, 2) is really an eigenfunction of the spin-sum operator and the corres-
ponding eigenvalue is 0, i.e. the corresponding two-particle state demonstrates zero projection of the total spin on
the z axis. However, it is necessary to verify, whether this spin function is also an eigenfunction of the operator Ŝ2.
To do this, we express the operator in the form

Ŝ2 = Ŝ+Ŝ− + (Ŝz)
2 − h̄Ŝz (248)

which we have derived for the general angular momentum in the exercise; see formula (57a). We will employ also
one of the equalities (69) expressing the effect of the raising and lowering operators on the angular momentum
eigenstates. So, we can calculate:

Ŝ2χA(1, 2) = Ŝ+Ŝ−χA + Ŝz ŜzχA︸ ︷︷ ︸
0

−h̄ ŜzχA︸ ︷︷ ︸
0

Thus, we need to evaluate

Ŝ−χA = (ŝ1− + ŝ2−)
1√
2
[χ+(1)χ−(2)− χ−(1)χ+(2)]

Realise that ŝ1− acts on functionswith the spin coodinate of the electron 1 [i.e. onχ+(1), χ−(1)] and analogously, ŝ2−
on the electron 2. We do the multiplication of the expressions in the parentheses, use the mentioned formula (69b)
for j = 1/2 andm either +1/2 or −1/2. After a few lines we get

Ŝ−χA = 0

Therefore, the equality
Ŝ2χA(1, 2) = 0 (249)

holds. It means that the spin wave function χA(1, 2) [and consequently also the total wave function Ψ(1, 2)] is also
an eigenfunction of the operator Ŝ2 and the corresponding eigenvalues is zero again.

Thus, the antisymmetric two-electron spin wave function [eq. (239)] represents a pair of electrons with zero projection
of the sum of their spins on the z axis (and also on other arbitrary axis) and also with zero total spin (i.e. with zero
eigenvalue of the operator Ŝ2).

Štandardne sa pre spinové vlnové funkcie používa značenie

χS
Sz

(250)

is being used for the spin wave functions. The upper index marks the value of S in the equation

Ŝ2χS
Sz

= h̄2S(S + 1)χS
Sz

(251)

and the lower index the value of Sz in the equation

Ŝzχ
S
Sz

= h̄Szχ
S
Sz

(252)

[See, for instance, equations (68), in which we were omitting h̄ for the sake of brevity.] From the indices S and Sz

we know what eigenvalues of the operators Ŝ2 and Ŝz their common eigenfunction corresponds to, so we know
everything about the total spin of the system.

Singlet: S = 0, Sz = 0. Thus, we write the spin function (239) as follows:

χA(σ1, σ2) = χ0
0 =

1√
2
[χ+(σ1)χ−(σ2)− χ−(σ1)χ+(σ2)] (253)

It is called singlet. A system in the singlet state (the He atom, for instance) has anti-parallel spins of its electrons
and the total spin 0.
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Triplet: S = 1, Sz ∈ {−1,0,+1}. From the theory in section 4.5 we know, that spin functions with non-zero
spin should obviosly to exist. (We still consider a two-electron system.) These are the functions [2, 3]

χ1
1 = χ+(σ1)χ+(σ2)

χ1
0 =

1√
2
[χ+(σ1)χ−(σ2) + χ−(σ1)χ+(σ2)]

χ1
−1 = χ−(σ1)χ−(σ2)

(254a)

(254b)

(254c)

and together they are called a triplet. This name originates from the property that if an atom is inserted in an external
magnetic field, then the corresponding energy level (which would otherwise be degenerate if we neglect other, very
weak effects) splits into three sublevels. If the atom in in the singlet state, then there is no such splitting. In this
document, we do not present calculations verifying that (254) are really the eigenfuntions of the operators Ŝz and
Ŝ2, but we have written the hints in this course and we have been doing calculations of this kind couple of times
and you ought to be able to accomplish them. The procedure for χ1

1 is straightforward and similar to that above for
χ0
0 = χA and also shorter. We can then calculate the vectros χ1

0 a χ1
−1 using the lowering operator Ŝ−, i.e. with the

aid of formula (69b). Or, we can directly verify them as we did with χA. Recall that in the Dirac ket-vectors notation,
the components of the triplet are written

|1, 1⟩, |1, 0⟩, |1,−1⟩ (255)

Note the the three functions of the triplet are symmetric. Consequently, if we aim to form a total wave function out
of them, its orbital part must be antisymmetric.

A system in any triplet state has the magnitude of the total spin described by the quantum number S = 1. If
the state is χ1

1, then also Sz = 1, which means that both electrons have their spin projections on the z axis equal
to +1/2. We say that the spins are parallel and equally oriented (i.e. they point to the same direction), which is an
inaccurate informal wording. The spins are of this character also in the state χ1

−1, but then sz = −1/2. (Lower-case
letters are used for symbols related to one particle, upper-case for the whole system.) The spin projections in the
state χ1

0 are mutually opposite but the total spin magnitude is still determined by the value S = 1; hence the square
if the total spin magnitude is h̄2S(S + 1) = 2h̄2.

An illustrative picture is that the arrow of the spin AM has equal length for each state of the triplet χ1
Sz

[its
square is 1(1 + 1)h̄2 = 2h̄2] given by the number S = 1. In the case of Sz = 1, this vector is oriented along the
positive z-axis direction. In the case of Sz = −1, it is oriented to the negative direction, and in the case of Sz = 0,
it is perpendicular to the z axis. If we, for example, looked at the state χ1

1 from a viewpoint of a differently oriented
coordinate system, we would have to write it as, e.g. χ ′1

−1 (this would only be in the case if the new z axis was
oriented exactly oppositely), but in general, we would have to express it as a linear combination of all the three
components, i.e. χ ′1 =

∑1
Sz=−1 χ

1
Sz
. Of course, it would be a triplet state also in this other coordinate system,

but in general, if viewed from the different point of view, it would not have a sharp (definite) value of Sz We also
see the the three vectors of a triplet are mutually of the same importance; we also say that they transform among
themselves upon rotations of the coordinate system.

And why the “arrow length” of the spin AM in a triplet state in not equal to the value of 1/2 + 1/2 = 1 (in
h̄ = 1 units)? After all, it is about two electrons and if they point their spin AM to the same directions, we should
obtain 1/2 + 1/2 = 1. It is because of the quantum-mechanical uncertainty. It is true that the “arrow length”,
more practically its square, is determined by the operator Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z . It is the QM expectation value of
this operator in the given state; shortly ⟨Ŝ2⟩. But because the cartesian components Ŝx, Ŝy, Ŝz do not commute
among themselves, it is impossible to determine sharp (definite) values Sx, Sy, Sz . Consequently, it is not possible
to determine the square of the “arrow length” in the classical way as S2

x + S2
y + S2

z . We have Sz = 1 for the state
χ1
1 and we might think that we just need to take Sx = Sy = 0 and in this way determine the square of the arrow

length; we would get 1 which is a wrong value because the correct one for the triplet state is S(S + 1) = 2. The
value of 2 is also the QM expectation value of this operator in any triplet state: ⟨χ1

Sz
|Ŝ2|χ1

Sz
⟩ = 2 (in the units of

h̄2).
There are no higher multiplets for the helium atom because two electrons cannot yield a total spin greater than 1.

For this, we would need a system of more electrons, e.g. the lithium atom at least.
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Any function of a triplet is orthogonal to the singlet function:

⟨χ1
Sz
|χ0

0⟩ =
∑

σ1=±1

∑
σ2=±1

χ1 ∗
Sz
(σ1, σ2)χ

0
0(σ1, σ2) = 0 (256)

It can easily be verified and it generally follows from the fact that they are eigenfunctions corresponding to differ-
ent eigenvalues of a hermitian operator, specifically of Ŝ2. The individual components of the triplet are mutually
orthogonal too:

⟨χ1
Sz
|χ1

S′
z
⟩ = δSz ,S′

z
(257)

Other multiplets. Hélium aj iné dvojelektrónové sústavy teda umožňujú len existenciu singletných a triplet-
ných spinových stavov elektrónového obalu, teda stavov s celkovými elektrónovými spinmi S buď 0 alebo 1. Jed-
noelektrónová sústava, ako napr. atóm vodíka, má zasa celkový elektrónový spin S rovný vždy 1/2, čo umožňuje
dva rôzne priemety spinu na os z (dve rôzne hodnoty Sz), a túto dvojicu spinových stavov nazývame v angličtine aj
v iných jazykoch doublet (čítaj dablet). Pre lítium (N = 3) by sme mali aj stavy s S = 3/2, čo dáva počet rôznych
priemetov na os z 2S + 1 = 4, a takáto štvorica spinových stavov sa v odbornej literatúre nazýva quartet. Pre
vyššie multiplety sa pri štúdiu elektrónovej štruktúry (ale aj u NMR) často stretávame aj s názvami quintet a sextet,
popr. aj ďalšími.

9 The Hartree-Fock Approximation

For an N -electron system, the complete non-relativistic Hamiltonian with added spin contributions takes the
form36

Ĥ =
N∑
i=1

[
− h̄2

2m
∇2

i + v̂ext(r⃗i)

]
+

1

2

N∑
i,j=1

′ e
2

4πε0

1

|r⃗i − r⃗j|
+ Ĥspin (258)

where the prime (the comma) at the summation over i, j indicates that cases with i = j are not accounted for.
The term with the operators v̂ext(r⃗i) represents the electrostatic interaction of the i-th electron with the given (ex-
ternal) potential, which itself is a sum of the Coulomb potentials due to the nuclei and, in addition, it may include
contributions from possible other sources (e.g. a capacitor field, into which the molecule may be inserted:37

v̂ext(r⃗) = −
∑
I

1

4πε0

ZIe
2

|r⃗ − R⃗I |
+ v̂other(r⃗) (259)

where I labels the individual nuclei of the molecule or a crystal, which we assume to be fixed, i.e. motionless (which
often is a good approximation) and are positioned at the points R⃗I . The charges of the nuclei are ZIe. Even if the
nuclei were moving slowly, our description using the stationary SchE would usually be satisfactory, because with
slow motion, the electronic structure manages to adapt to the instantaneous positions of the nuclei. Neglect of the
kinetic energy of the nuclei is called the Born-Oppenheimer approximation. We did not include the Coulomb energy
of the nuclei into the Hamiltonian (258), i.e. the term

1

2

∑
I,J
I ̸=J

1

4πε0

ZIZJ e
2

|R⃗I − R⃗J |
(260)

With constant positions of the nuclei, this term represents only a constant shift in the total energy of the system
and its inclusion would therefore be trivial. Hence, we will omit it. However, it would be necessary to include it
at least in cases where we would study e.g. dependence of the energy of the ground state of the molecule on the
positions of the nuclei, vibrational frequencies, etc. An external magnetic field is not included in Hamiltonian (258).

36The existence of spin follows from the relativistic theory. We do not study a relativistic theory, but since we need to include spin into
the description, we added it into the theory ”by hand” (we postulated it in Chapter 7 based on known experimental facts and also on what
we have learnt about the angular momentum earlier in section 4.5).

37The external field in which an electron is located is therefore, in this context, understood to be the electrostatic field generated by the
nuclei and by any other external sources.
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Our task is to find the solution of the problem

ĤΨ = EΨ (261)

at least for the ground state. For Hamiltonian (258), we cannot find an exact solution of this equation mainly due
to the term with electron-electron repulsion. The Hartree method and especially the Hartree-Fock one makes it
possible to find at least an approximate solution.

9.1 Motivation for Further Steps

The task to finding the eigenstates of Hamiltonian (258) would be greatly simplified if we could replace this
Hamiltonian with an effective Hamiltonian of the form that is a sum of one-particle terms:

Ĥeff =
N∑
i=1

ĥeff
i (r⃗i, σi) (262)

This form implies as if the individual electrons were not interacting with each other, and therefore we often briefly
call such a Hamiltonian a ”non-interacting Hamiltonian.” In fact, such or a formally similar Hamiltonianmay involve
at least an indirect interaction between electrons, as we will see later. For the sake of generality, we now consider
possible dependence of the Hamiltonian on spin, although we will abandon it later; in traditional expositions of the
Hartree method (HM) and the Hartree-Fock method (HFM), spin usually does not enter the Hamiltonian. However,
its inclusionwould not present a difficulty. Wewill label the spatial and spin coordinates in differentways, depending
on what is convenient for particular purpose: (r⃗i, σi) ≡ (xi) ≡ (i).

Assume that we know the solutions of each of the effective one-particle Hamiltonians:

ĥeff
i ϕi(i) = Eiϕi(i) (263)

(For this is a one-particle problem, solutions to it would not be, hopefully, difficult to determine at least numerically.)
It can then be easily shown that the solution for the total Hamiltonian (262) is the product function

ΨHP(1, 2, . . . , N) = ϕ1(1)ϕ2(2) . . . ϕN(N) (264)

that is
Heff ΨHP = EΨHP (265)

with the eigenenergy being the sum of the energies of the individual electrons:38

E =
N∑
i=1

Ei (266)

A wave function of the form (264) is called Hartree product.

9.2 Antisymmetrisation of the Wave Function

Although the wave function of the form (264) may also be an exact solution for the effective Hamiltonian (262),
it is not physically satisfactory because it is not antisymmetric. It is not even symmetric, so it does not respect the
indistinguishability of electrons at all. (However, it would be symmetric at least if we chose functions of the same
form for ϕ1, …, ϕN .) We will show how to make an antisymmetric function from it.

N = 2 .

ϕ1(1)ϕ2(2) −→ 1√
2
[ϕ1(1)ϕ2(2)− ϕ1(2)ϕ2(1)] =

1√
2

∣∣∣∣∣ ϕ1(1) ϕ2(1)

ϕ1(2) ϕ2(2)

∣∣∣∣∣ = Ψ(1, 2) (267)

38It will be somehow more difficult in the HF method.
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N = 3 . This is more complicated here, so we will first show how to make a symmetric function from the Hartree
product and then an antisymmetric one. From the trio 1, 2, 3 representing the coordinate of electrons, we create all
possible permutations (physically representing mutual exchanges of electrons):

123 132 231 213 312 321 (268)

We write down the symmetrised function as follows:

Ψsym = N
[
ϕ1(1)ϕ2(2)ϕ3(3) + ϕ1(1)ϕ2(3)ϕ3(2)+

+ϕ1(2)ϕ2(3)ϕ3(1) + ϕ1(2)ϕ2(1)ϕ3(3)+ (269)

+ϕ1(3)ϕ2(1)ϕ3(2) + ϕ1(3)ϕ2(2)ϕ3(1)
]

where N is a normalisation constant such that ⟨Ψ|Ψ⟩ = 1. It is easy to convince that the antisymmetric function
will be similar to the last one, but in such a way that at each odd permutation the sign of the respective term will
be changed: 39

Ψ(1, 2, 3) =
1√
6

[
ϕ1(1)ϕ2(2)ϕ3(3)− ϕ1(1)ϕ2(3)ϕ3(2)+

+ϕ1(2)ϕ2(3)ϕ3(1)− ϕ1(2)ϕ2(1)ϕ3(3)+ (270)

+ϕ1(3)ϕ2(1)ϕ3(2)− ϕ1(3)ϕ2(2)ϕ3(1)
]

For instance, the 123 permutation is 0th, that is even. The 321 permutation is formed by one interchange of the order
of the electrons 1 and 3 compared to the originally defined order (123), so it is odd. We get the 312 permutation from
the original order by two consecutive elementary swaps, so it is an even permutation. Possibly by four swaps, but
it’s also an even number. Again, it is easy, albeit a little longer, to be convinced that we can also write antisymmetric
three-electron function (270) as a determinant:

Ψ(1, 2, 3) =
1√
6

∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) ϕ3(1)

ϕ1(2) ϕ2(2) ϕ3(2)

ϕ1(3) ϕ2(3) ϕ3(3)

∣∣∣∣∣∣∣ (271)

AGeneralN . There isN ! permutations ofN numbers. We produce the antisymmetric function from the Hartree
product (264) as a linear combination of N ! terms, which we write as follows:

Ψ(1, 2, . . . , N) =
1√
N !

N !− 1∑
p=0

(−1)p ϕ1(1p) ϕ2(2p) . . . ϕN(Np) (272)

The symbols 1p, …,Np are numbers obtained by pth permutation of the original order 1, …,N . The zeroth permuta-
tions represents the original order. It does not matter what the order of the other permutations is. Only the parity
of a permutation is important (whether it is even or odd), and the parity does not depend on the chosen order. For
illustration, e.g. for N = 4 in brief symbolic notation,

Ψ(1, 2, 3, 4) =
1√
4!

(
1234− 1243 + 1342− 1324 + 1423− 1432+

+2143− 2134 + 2314− 2341 + 2431− 2413+

+3124− 3142 + 3241− 3214 + 3412− 3421+

+4132− 4123 + 4213− 4231 + 4321− 4312
)

By permutation in these notes we mean either the whole ordered N -tuple of numbers, or just an elementary
swapping of a pair of numbers to get a givenN -tuple; the specific meaning needs to be understood from the context.

39An equivalent alternative would be to change the sign at each even permutation.
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However, we will get the same resulting antisymmetric wave function as (272) also in the case if we interchange
just the indices of the wave functions and will keep the order of the coordinates untouched (original):

Ψ(1, 2, . . . , N) =
1√
N !

N !− 1∑
p=0

(−1)p ϕ1p(1) ϕ2p(2) . . . ϕNp(N) (273)

The wave function (273) can again be written as a determinants, as it is taught in algebra:

Ψ(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ2(1) . . . ϕN(1)

ϕ1(2) ϕ2(2) . . . ϕN(2)

. . . . . . . . . . . .

ϕ1(N) ϕ2(N) . . . ϕN(N)

∣∣∣∣∣∣∣∣∣ (274)

A wave function expressed in this way is called a Slater determinant. It is a well-known property of determinants
from algebra that if we interchange two rows, the sign of the determinant changes.40 An interchange of two rows,
as can be seen, physically corresponds to an interchange of two electrons. Therefore, the Slater determinant really
ensures that the wave function changes its sign to the opposite upon interchange of any two electrons.

In order not to have to write long formulas of the type (273) or (274) every time, we sometimes use the expression

Ψ(1, 2, . . . , N) = Â [ϕ1(1) ϕ2(2) . . . ϕN(N)] (276)

where Â is the anisymmetrisation operator. The way how its acts on a function (on a Hartree product), is obvious
from the above explanation.

In section 8.6 we learnt that two electrons cannot occupy the same one-particle state. Therefore, for instance,
the state

Ψ(1, 2, 3) = Â [ϕ(1) ϕ(2) ϕ3(3)]

(in which the first two spinorbitals are equal, i.e. ϕ1 = ϕ2 = ϕ), should have zero probability of its realisation.
If we look at expression (270), we see that in such a case Ψ is really zero. Again, this property of determinants is
know from algebra: if any two functions of the Hartree product are the same, the corresponding Slater determinant
is identically zero. Thus, the choice of the wave function in the form of a Slater determinant will also ensure the
fulfilment of the Pauli principle and, as can be seen, it is closely related to the fact that such a wave function is
antisymmetric.

At the end let us note that if Hartree product (264) is an eigenstate of the effective Hamiltonian (262),

Heff ΨHP = EΨHP

then also any state created by some permutation of the Hartree product will be an eigenfunction corresponding
to the same eigenenergy. Then we come to the conclusion that the corresponding antisymmetric wave function
Ψ = ÂΨHP is also an eigenfunction of this Hamiltonian and corresponds to the same energy E . And let us
summarise our findings of this section: we have learnt how to produce a wave function of the correct permutation
symmetry from the Hartree product (264).

40Also if we interchange two columns. However, if we are talking about the exchange of coordinates of electrons, then for the form (274),
the exchange of rows is important. However, the columnar Slater determinant is often used, i.e.

Ψ(1, 2, . . . , N) =
1√
N !

∣∣∣∣∣∣∣∣∣
ϕ1(1) ϕ1(2) . . . ϕ1(N)

ϕ2(1) ϕ2(2) . . . ϕ2(N)

. . . . . . . . . . . .

ϕN (1) ϕN (2) . . . ϕN (N)

∣∣∣∣∣∣∣∣∣ (275)

It is identically equal to determinant (274). For the determinant (275), an interchange of two electrons is mathematically represented by
the interchange of two columns. It is just a matter of preference whether we use the form (274) or (275).
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9.3 The Hartree-Fock Self-Consistent Field Method

The Task To Be Solved. We have to find an approximate ground state of the N -electron system described by the
Hamiltoian

Ĥ =
N∑
i=1

ĥ(i) +
1

2

N∑
i,j=1
i ̸=j

1

|r⃗i − r⃗j|
(277)

where

ĥ(i) ≡ ĥ(r⃗i) = −∇2
i

2
+ v̂ext(r⃗i) (278)

Thus, we will be using the atomic units in this section. The Hamiltonian defines the basis physical parameters
(positions and charges of the nuclei and the number of electrons) of the task to be solved. As we can see, the task is
a little bit simpler comparing the operator (258) since we neglect the spin-dependent terms. This is, however, often
an excellent or very good approximation, especially for lighter atoms.41 This time we will denote the many-particle
eigenfunction to be determined as Φ, not Ψ. Hence, we have to solve the task ĤΦ = EΦ [rov. (261)].

The Proposed Form of The Solution. In the Hartree-Fock method (HFM), we will search the wave function Φ in
a form of the Slater determinant (274), that is, the function will obey the antisymmetry requirement.42 Writing its
arguments in detail, it is

Φ(r⃗1, σ1, r⃗2, σ2, . . . , r⃗N , σN).
For practical reasons, this determinant is often written not as usually but using the expansion (273):

Φ(1, 2, . . . , N) =
1√
N !

N !− 1∑
p=0

(−1)p ϕ1p(1) ϕ2p(2) . . . ϕNp(N) (279)

The spinorbitals ϕ1(r⃗, σ), . . . , ϕN(r⃗, σ) are the basic building blocks in out construction of the many-body wave
function Φ. They are unknown functions to be determined.

The Functional Representing the Energy for a Chosen Wave Function (279). HFM is a particular realisation of
the variational method; see section 6.1. In the sense of this method, we will consider the function (279) as a trial
function on which the variational method will be applied. The role of the variational parameters will be played by
the one-particle spinorbitals43 ϕi. If we ensured the value of the denominator of the fraction (167) equal to 1, we
could determine the total energy of the system by minimisation of the expression

G =

∫
Φ∗(1, . . . , N) Ĥ Φ(1, . . . , N) dτ ≥ E0 (280)

where dτ ≡ dx1dx2 . . . dxN means integration over the spatial coordinates of all the electrons and also summation
over their spin coordinates. It is because at the correct normalisation∫

Φ∗(1, . . . , N) Φ(1, . . . , N) dτ = 1 (281)

G would represent the quantum-mechanical expectation value of the energy of the system being in the state Φ.
Because the expression G depends on functions (by which we mean ϕi), it is called a functional. We will ensure the

41By not considering the spin degrees of freedom in the Hamiltonian, we consider a purely non-relativistic Hamiltonian. It is because the
presence of spin follows from the relativistic quantum electrodynamics. This still does not prevent us from considering the spin degrees of
freedom in wave functions.

42We just note that there is also the Hartree method (HM). In it, the wave function is sought in the form of the Hartree product. This is
not sufficient for electronic structure, but the HM would be suitable as an intermediate step to the HF method; after studying it, the HFM
could be mastered more easily and better understood. Due to lack of time, we cannot focus on the HM, but you can see it in the Appendix E.
Since it assumes a simpler form of the wave function, it is a simpler method than the HFM.

43In reality, even those will later be expressed as linear combinations of some known functions. Thus, the corresponding coefficients
will become the variational parameters, which is practical.
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normalisation of Φ by demanding orthonormality of the spinorbitals:∫
ϕ∗
i (r⃗, σ)ϕj(r⃗, σ) dx ≡ ⟨ϕi|ϕj⟩ = δij , ∀i, j (282)

These conditions are a common element in the construction of the HF method [7, 8] and facilitate its derivation. The
conditions of the orthonormality will be satisfied using Lagrange multipliers. Therefore, we define an augmented
functional

EHF = G −
N∑

i,j=1

λij [⟨ϕi|ϕj⟩ − δij] (283)

in which λij are the mentioned multipliers. Thus, instead of the simpler functional (280), we will minimise EHF. The
one-particle functions ϕi standing in (279) are unknown and our task is to determine them so that the value of EHF
can be as low as possible. Hence, the spinorbitals ϕi have, at least formally, a role of variational parameters. It is
practical to split the whole functional (283) to several terms and then simplify as follows:

EHF = G + L = G(1) + G(2) + L (284)

where

G(1) ≡
∫

Φ∗(1, . . . , N)

[
N∑
i=1

ĥ(i)

]
Φ(1, . . . , N) dx1 . . . dxN (285)

is the contribution from the single-particle terms of the Hamiltonian,

G(2) ≡
∫

Φ∗(1, . . . , N)

[
1

2

N∑
i,j=1

′ 1

rij

]
Φ(1, . . . , N) dx1 . . . dxN (286)

is the contribution from the two-particle terms of the Hamiltonian. The prime at the summation over i, j indicates
that the cases of i = j are omitted. The third component of the functional EHF is the term responsible for the
orthonormality of the spinorbitals:

L = −
N∑

i,j=1

λij [⟨ϕi|ϕj⟩ − δij] (287)

We now explicitly substitute the Slater determinant (279) into these three components of theHartree-Fock functional
EHF. We start with G(1) and obtain

G(1) =
N∑
i=1

∫
ϕ∗
i (1) ĥ(1) ϕi(1) dx1 ≡

N∑
i=1

⟨ϕi|ĥ|ϕi⟩ (288)

In order to work from definition (285) toward the final expression, eq. (288), it was necessary in particular:
• Explicitly use the antisymmetric function (279).
• Utilise orthonormality of the spinorbitals, thanks to which only the term with p′ = p of the sum over the per-
mutations p′ remains non-vanishing.

• Later, it was necessary to realise in a certain step of the manipulations that in the resulting sum over the permuta-
tions (for any chosen i), each term (each value) is repeated (N − 1)! times. Therefore, it was possible to express
the summation as follows:

N !−1∑
p=0

something = (N − 1)!
N∑
j=1

something similar, depending on the index j,
independent of i.

• There is still the sum over i there that was to the left of the sum over the permutations. The sum over i can be
calculated trivially for nothing depends on the index i there.

• At the end, only the sum over j will be left there. For the elegance of the final result, we denote this summation
index to i.
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Although we do not take over the Hartree method (HM), we will at least mention that we would also come to a term
of the form (288) there, and much easier, because in the HM, the wave function has only one term.

In a similar, although amore complexway, we now begin to express the two-particle contributionG(2) to the total
functional EHF. The derivation is even longer and really more difficult, but with proper notation and consistency in
the individual steps of the calculation, it is not extremely difficult. Here are at least a few key points.
• Again, it is necessary to use the orthonormality of the spinorbitals, thanks to which only two non-zero terms
remain from the sum over the permutations p′ (for given i and j):
– the one with p′ = p [as it also was in the derivation of G(1)]
– also the term created by such a permutation p′ that has only the indices i and j interchanged compared to the

ordering in the permutation p; We can denoted it as p′0. Thus, if the permutation p is even, then the p′0 is odd
and vice versa. Consequently, p+ p′0 in the second non-vanishing term is an odd number.

• Similarly to the derivation of G(1), here it also is necessary to realise in a certain step that, although for any chosen
i, j there are N ! contributions in the summation over the permutations p, not all of them are different from each
other. Different from each other, let us call them unique, are N(N − 1)/2 contributions for any given pair of
indices i, j. Thus, each of the unique contributions is repeated N !/[N(N − 1)/2] times.

We arrive at

G(2) =
1

2

N∑
i,j=1

′
[∫

ϕ∗
i (1)ϕ

∗
j(2)

1

r12
ϕi(1)ϕj(2) dx1 dx2 −

∫
ϕ∗
i (1)ϕ

∗
j(2)

1

r12
ϕj(1)ϕi(2) dx1 dx2

]
(289)

We got the two terms (apart from the fact that there are also the summations there) because of the antisymmetry of
the wave function. Therefore, the second term has exchanged electron coordinates (or the wave function indices)
and has the opposite sign to the first term. In the HM, we would get only the first term; you may check (E.13). Using
the Dirac bra and ket vector notation, the writing will be shorter:

G(2) =
1

2

N∑
i,j=1

′ [〈ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
−
〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉]
(290)

In such a notation, however, it is necessary to remember on which variables the individual functions depend and to
keep the introduced order.

Thus, we have constructed the whole functional EHF = G(1) + G(2) + L to calculate the ground-state energy:

EHF[ϕ] =
N∑
i=1

⟨ϕi|ĥ|ϕi⟩+
1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
− 1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
−

N∑
i,j=1

λij [⟨ϕi|ϕj⟩ − δij] ≥ E0

(291)

The One-Particle Contribution. The first term represents the sum of one-particle energies, which are the kinetic
energies of the electrons plus their potential energies in the given external field, i.e. in the potential v̂ext(r⃗).

The Two-Particle Contribution +
1

2
…. To know the physical meaning of the second term, let’s write it down in

more detail, using spatial integrals and summations over the spin coordinates. In doing this, let us return for a while
to the SI units. We express the spinorbitals more explicitly employing the usual factorised form

ϕi(x) = φi(r⃗)χi(σ) (292)
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in which the (usual spatial) orbitals are orthonormal and the spin functions too,44 see (212). Then, placing the
integrals, sums, and other symbols as practically as possible, we get

2nd term of (291) =
1

2

N∑
i,j=1

′
∫

d3r1d3r2 φ∗
i (r⃗1)φ

∗
j(r⃗2)

1

4πε0

(−e)2

|r⃗1 − r⃗2|
φi(r⃗1)φj(r⃗2) ×

×
∑

σ1=±1

∑
σ2=±1

χ∗
i (σ1)χ

∗
j(σ2)χi(σ1)χj(σ2)︸ ︷︷ ︸

1

(293)

The double sum over the spins written in the second row is equal to 1 due to the normalisation of the spin functions;
for, e.g., an electron with the coordinate σ1, we have

∑
σ1=±1 χ

∗
i (σ1)χi(σ1) = 1 for each index i. The expression

− eφ∗
i (r⃗1)φi(r⃗1) = ρi(r⃗1) (294)

can be, in a quantum-mechanical sense45 understood as electric charge density generated by the electron 1 in the
orbital φi. Quite analogously we also see the density ρj(r⃗2) in (293). Therefore, the 2nd term of formula (291) can be
expressed as follows:

1

4πε0

1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
=

1

2

N∑
i,j=1

′
∫

d3r1d3r2
1

4πε0

ρi(r⃗1)ρj(r⃗2)

|r⃗1 − r⃗2|
(295)

We see that the integral standing there is nothing but the electrostatic Coulomb energy of the interaction of two
charge distributions with the spatial densities ρi(r⃗1) and ρj(r⃗2). That is, the purely classical contribution, well
known from the basic physics course too! For these reasons the expression (integral)

Jij ≡
〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
=

∫
d3r1d3r2 φ∗

i (r⃗1)φ
∗
j(r⃗2)

1

|r⃗1 − r⃗2|
φi(r⃗1)φj(r⃗2) > 0 (296)

is called the Coulomb integral [8, 11] (also Coulombic). We would obtain it also in the HM [you may check (E.13)].
Looking at its form which employs the integral in (295) we see, that, because of the equal signs of the interacting
charges, it is really positive. Let us conclude our discussion of expression (295) using other words: it represents the
electron-electron electrostatic Coulomb repulsion (an energy) of the given N -electron system.

The Two-Particle Contribution −
1

2
…. In a similar way, let us try to find a meaning of the third term of for-

mula (291). Doing so, we arrive at the result

−1

2

N∑
i,j=1

′ 〈ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
= −1

2

N∑
i,j=1

′ δχiχj

∫
d3r1d3r2

φ∗
i (r⃗1)φ

∗
j(r⃗2)φj(r⃗1)φi(r⃗2)

|r⃗1 − r⃗2|
(297)

The factor δχiχj
emerged there from the contribution of the spin functions thanks to their orthogonality and norm-

alisation.46 This time it is not easy to get densities from the orbitals. Therefore, the third term of formula (291) does
44Although it might seem that there may beN different spin functions χ1, χ2, …, χN there, in fact each of them is just either χ+ or χ−,

that is chi+1 or χ−1 in the different notation.
45φ∗

i (r⃗)φi(r⃗) is not a classical density, but a probability density in the sense of the 1st postulate of QM. In an analogous sense,−e|φi(r⃗|2
is then a charge density.

46It is not complicated and not hard to get at all, one just have to proceed carefully:∑
σ1=±1

∑
σ2=±1

χ∗
i (σ1)χ

∗
j (σ2)χj(σ1)χi(σ2) =

∑
σ1=±1

χ∗
i (σ1)χj(σ1)

∑
σ2=±1

χ∗
j (σ2)χi(σ2)︸ ︷︷ ︸
δχjχi

= δχiχj
δχjχi

= δχiχj

Thus, the sum marked by the curled bracket is nonzero only if the spin function for the spinorbital ϕj is the same as the spin function for
the spinorbital ϕi. And the value of this summation, of course, no longer depends on any spin coordinate; it is just a number (0 or 1). In
the same way we will evaluate the remaining summation, i.e. the one over σ1.
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not have any simple classical interpretation. It emerged from the description as a consequence of the antisymmetry
of the wave function of identical fermions. Hence, it is a purely non-classical contribution. The integral

Kij ≡
〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
= δχiχj

∫
d3r1d3r2 φ∗

i (r⃗1)φ
∗
j(r⃗2)

1

|r⃗1 − r⃗2|
φj(r⃗1)φi(r⃗2) ≥ 0 (298)

is called the exchange integral [8, 11]. Without proof, we stated that if it is nonzero, it is positive [7], similarly as
the Coulomb integral is always positive. Comparing to the Coulomb integral, the indices of the spinorbitals i, j on
the right of 1/r12 are exchanged in the exchange integral.

Thus, the inclusion of antisymmetry leads to the exchange integral which lowers the total energy, and there-
fore the Hartree-Fock method gives a lower, or better, ground state energy than the Hartree method, in which the
exchange integrals do not appear. The term exchange interaction is also being used. However, it must not be mis-
understood as some physical interaction, but only as a way or concept to represent the corresponding contribution
to the total energy of the system described by the single-determinant wave function [7].

The factor δχiχj
in (297) causes that only spinorbitals with the same spins contribute to the exchange inter-

action. It does not even make sense to consider the exchange interaction and the exchange integral for electrons or
spinorbitals with different spins.

Intuitively, we can partially understand the effect of the energy lowering as a consequence of the Pauli repulsion:
two electrons with equally oriented spins must differ in something else, otherwise they would violate the Pauli
exclusion principle. Therfore, they differ in their spatial wave functions which are such (different from one another,
evenmutually orthogonal) that keep the electrons apart. By this, they reduce their Coulomb electrostatic energy and
consequently also the total energy of the system. However, a thorough understanding of the energy lowering would
also have to take into account the electrons-nuclei energies. Therefore, the above interpretation is not accurate
enough.

Finally, we remind that although the exchange interaction is non-classical in nature, it is still derived from
the classical electrostatic interaction, because the exchange integrals include the factor 1/|r⃗1 − r⃗2|. Realise: the
corresponding energy is just a certain part of the quantum-mechanical exspectation value of the potential energy
operator of the electrons.

The Last Contribution to the Functional EHF – it is only present to guarantee the orthonormality of the spinor-
bitals. If this is achieved, the term vanishes.

The conditions j ̸= i in the above double-summations is no longer necessary. This can be seen from the fact
that the expressions in the functional EHF

〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
and

〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
are subtracted from one another

at j = i. So, their non-physicality does not matter, and if it suits us, we will consider summations without the
condition j ̸= i. In this context, let us see how the Coulomb sum (295) will change upon inclusion of the terms with
j = i. For this purpose, it is advantageous to move the summations over i and j on the right of the integrals and
calculate (now already without the prime at

∑
)

N∑
i,j=1

ρi(r⃗1)ρj(r⃗2) = ρ(r⃗1)ρ(r⃗2) (299)

where

ρ(r⃗) =
N∑
i=1

ρi(r⃗) (300)

is the total charge density from the electrons. Thus, the Coulomb contribution to EHF augmented in this way can
be expressed as follows:

1

4πε0

1

2

N∑
i,j=1

〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
=

1

2

∫
d3r1d3r2

1

4πε0

ρ(r⃗1)ρ(r⃗2)

|r⃗1 − r⃗2|
(301)

In the context of electronic-structure methods, this quantity is called Hartree energy. It is again an electrostatic
interaction of the charge density, but this time of the total one, i.e. it also contains the non-physical contribution of
the interaction of the electron with itself (the so-called self-interaction or self-energy).

64



Minimisation of the Functional (and of the Energy). We want to find out at what function ϕi the functional EHF
is minimal. This is something analogous to finding the minimum of a function, when we calculate the derivative of
the function. The total differential of the function vanishes at the minimum of the function. Here, however, we have
to look for a minimum of the functional. Therefore, we will make variations of the functionalEHF, which means that
we will examine how it changes (varies) upon small variations of the functions ϕi which it depends on. Consider
the following variation of the functions ϕi:

ϕi −→ ϕi + δϕi (302)
The functional then varies as follows:

EHF[ϕ] −→ EHF[ϕ+ δϕ] = EHF[ϕ] + δEHF (303)

and it could analogously be written also for its individual components G(1), G(2), and L. Hence, the sum of the
one-particle integrals in (288) gets

G(1)[ϕ] −→ G(1)[ϕ+ δϕ] =
N∑
i=1

∫
(ϕi + δϕi)

∗ ĥ(i) (ϕi + δϕi) dx =

= G(1)[ϕ] +
N∑
i=1

∫
δϕ∗

i ĥ(i) ϕi dx+
N∑
i=1

∫
[ĥ(i) ϕi]

∗δϕi dx︸ ︷︷ ︸
δG(1)

+ (304)

+ terms in 2nd order in δϕk , which are negligible

Note that the second term in δG(1) is complex conjugate (c.c.) to the first one. So, we obtain

δG(1) =
N∑
i=1

⟨δϕi|ĥ|ϕi⟩+ c.c. (305)

In calculations with two-particle integrals too, we will omit writing the arguments of the functions ϕ in some places
for the sake of brevity. We again remind ourselves that it is necessary to remember which function depends on
xi ≡ r⃗i, σi (briefly i) and which on xj . For the variation of the sum of the two-particle integrals (289) we get, using
a procedure in a manner similar to the above one, only more complex, the following result [using that rij = rji and
that we can arbitrarily rename and interchange summation indices (i↔ j) with one another]:

δG(2) =
N∑

i,j=1

′
∫
δϕ∗

i ϕ
∗
j

1

r12
ϕi ϕj dx1 dx2 +

N∑
i,j=1

′
∫
ϕ∗
i ϕ

∗
j

1

r12
δϕi ϕj dx1 dx2

−
N∑

i,j=1

′
∫
δϕ∗

i ϕ
∗
j

1

r12
ϕj ϕi dx1 dx2 −

N∑
i,j=1

′
∫
ϕ∗
i ϕ

∗
j

1

r12
δϕj ϕi dx1 dx2

(306)

Note that the second terms in each row are complex conjugate to the firts terms. In the compact notation, we write
down this variation as follows:

δG(2) =

[
N∑

i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕi ϕj⟩+ k.z.

]
−

[
N∑

i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕj ϕi⟩+ k.z.

]
(307)

To evaluate also the variation of the functional EHF, not only of G, it remains to evaluate the variation of the term
with the Largrange multiplier, see (287). This can be calculated easily, resulting to

δL = −
N∑

i,j=1

λij⟨δϕi|ϕj⟩ + k.z. (308)

Now we are able to write what the variation of the whole functional EHF, that is the value of

δEHF = EHF[ϕ+ δϕ]− EHF[ϕ] = δG(1) + δG(2) + δL (309)
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is equal to. To accomplish this, we need to collect the results (304), (306) and (308). We arrive at

δEHF =
N∑
i=1

⟨δϕi|ĥ|ϕi⟩+
N∑

i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕi ϕj⟩ −

N∑
i,j=1

′ ⟨δϕi ϕj|r−1
12 |ϕj ϕi⟩ −

N∑
i,j=1

λij⟨δϕi|ϕj⟩ + c.c. (310)

and we better rewrite this result using integrals and at the same time we pull the common parts to the left:

δEHF =
N∑
i=1

∫
dx1 δϕ∗

i (1)

[

ĥ(1)ϕi(1) +
N∑
j=1

′
∫

dx2 ϕ∗
j(2) r

−1
12 ϕi(1)ϕj(2)−

N∑
j=1

′
∫

dx2 ϕ∗
j(2) r

−1
12 ϕj(1)ϕi(2)−

N∑
j=1

λij ϕj(1)]
+ c.c.

(311)

where c.c. denotes the terms complex conjugate to the former ones. We keep writing the primes at the sums, that
is, we are omitting summations over j = i although this is no longer necessary.

As we have said before, we are trying to find out for what functions ϕi is the functionalEHF is minimal. Just as a
function has zero first derivative around its extremal point, ie zero change in the first order, so a functionial around
its extremum has vanishing variation. Therefore, in order to find the minimising spinorbitals ϕi, we require

δEHF = 0 (312)

To satisfy this for any small variations δϕi,

the expression in the square brackets (311) must vanish. (313)

Before we write down zeroness of the expression in the square brackets, we introduce two important terms and
their notation, so that we can properly write the integrals over x2 in the square brackets in (311).

The Coulomb Operator. The expression

Ĵj(1) =

∫
dx2 ϕ∗

j(2) r
−1
12 ϕj(2) =

∫
d3r2 φ∗

j(r⃗2)
1

|r⃗1 − r⃗2|
φj(r⃗2) (314)

is called the Coulomb operátor. Its name comes from the fact that it expresses (in the atomic units) the Coulomb
electrostatic energy of an electron located at point r⃗1 with an electron cloud that is created by the wave function
ϕj . It can be seen from formula (314) that it is an operator expressed by real numerical values; it is a real function
of the variable r⃗1. Hence, the Coulombov operátor is hermitian.

The Exchange Operator. The second term in the square brackets of (311) is more complicated than the first one.
We will define the corresponding operator indirectly only, through its effect on the spinorbital. The form of this
operator will look rather artificially and is motivated by the equations being easy to write. The square brackets in
the following definition (it is the framed part) are not necessary but they are convenient for clarity.

K̂j(1)ϕi(1) =

[∫
dx2 ϕ∗

j(2) r
−1
12 ϕi(2)

]
ϕj(1) =

[
δχjχi

∫
d3r2 φ∗

j(r⃗2)
1

|r⃗1 − r⃗2|
φi(r⃗2)

]
φj(r⃗1)χj(σ1) (315)

The operator K̂j is called the exchange operator. Its name comes from the fact that it is located in the term of the
functional that was created by exchanging the coordinates of the two electrons. The presence of this operator stems
from the indistinguishability of electrons and from the requirement of antisymmetry of the wave function, and is
therefore of a non-classical nature. At the same time, however, it is a manifestation of electrostatic interaction, since
the expression r−1

12 is found in this operator. Although it may seem that the K̂j operator should also carry the index
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i of the function it acts on, it is not the case.47 K̂j(1) processes any function it acts on by integrating it over x2 and
also produces the function ϕj(1). It is therefore an operator that depends on ϕj , processes any given function (for
instance ϕi) in a defined way and there is no reason to put the symbol of the function on that it is currently acting,
on the operator notation. Directly from definitions 3 and 4 in section 1.2.4, we can easily prove that the exchange
operator is also hermitian.

The Hartree-Fock Equations. Equation (313) can now be written as follows:[
ĥ(1) +

N∑
j=1

′ Ĵj(1)−
N∑
j=1

′ K̂j(1)

]
ϕi(1) =

N∑
j=1

λij ϕj(1) (320)

This system of equations is called the Hartree-Fock equations (HFE) [7]. It will be possible to simplify it even more
to the so-called canonical form in which λij ∝ δij ; therefore the summation on the right-hand side will disappear.
The term in the square brackets is called the Fock operator:

f̂(1) = ĥ(1) +
N∑
j=1

[
Ĵj(1)− K̂j(1)

]
(321)

As mentioned above, it is not necessary to omit the values with i = j in the summations. This is and important
simplifications because, thanks to it, there is only one and the same Fock operator in the HFE48 that acts on each
spinorbital ϕi and the HFE can then be written down briefly:

f̂(1)ϕi(1) =
N∑
j=1

λij ϕj(1) (322)

Finally, realise that the Fock operator is hermitian. This comes as a consequence of ĥ(1), Ĵj(1) and K̂j(1) being
hermitian operators.

47The formal expression of the symbol K̂j depends on i of that spinorbital and therefore it might seem that the exchange operator should
also get the index i:

K̂(i)
j (1) =

[∫
dx2 ϕ∗j (2) r−1

12 ϕi(2)

]
ϕj(1)

ϕi(1)
(316)

For a better understanding of the exchange operator, realise that it can act on any function, not just the spinorbitals ϕi. Let us first consider
any function ϕ(x) expressible as a linear combination of our spinorbitals:

ϕ(x) =

N∑
k=1

ckϕk(x) (317)

Then we express the effect of the exchange operator on ϕ(x) due to its linearity as follows:

K̂j(1)ϕ(1) =

N∑
k=1

ckK̂j(1)ϕk(1) =

N∑
k=1

ck

[∫
dx2 ϕ∗j (2) r−1

12 ϕk(2)

]
ϕj(1) =

[∫
dx2 ϕ∗j (2) r−1

12

N∑
k=1

ckϕk(2)

]
ϕj(1) (318)

i.e.

K̂j(1)ϕ(1) =

[∫
dx2 ϕ∗j (2) r−1

12 ϕ(2)

]
ϕj(1) (319)

It can be seen that nothing prevents us from extending the definition of the exchange operator so that it can act on any function of the
variable x1, not only on the above-mentioned linear combination (317). The action of the exchange operator K̂j(1) must therefore be
understood as creating the spinorbital ϕj(1) and multiplying it by the number

∫
ϕ∗j (2) r

−1
12 ϕ(2) dx2. This number therefore depends on

the function on that K̂j(1) acts.
48This is an essential difference and perhaps also a surprising simplification in comparison to Hartree equations (E.29).
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Solution of the HFE. The Self-Consistent Field. The HFE is a system of N integro-differential equation for the
unknow functions ϕi. Thus, by solving these equations we find the functions that minimise the functional EHF. In
such case, the value of this functional is an approximate energy of the ground state of the system. We do not have
enough time in this course to properly study the ways how to solve the HFE, so we will describe them only in a
roughest sketch.

In principle, the HFE are solved using subsequent iterations: in the beginning, we choose some guess functions

ϕ
(0)
1 , ϕ

(0)
2 , . . . , ϕ

(0)
N (323)

For instance, if we solve the HFE for an atom, we can take the exactly know spinorbitals of a hydrogen-like ion as
the initial guess ϕ(0)

i . We then determine the initial Fock operator using the guess functions (the operator is certainly
not good yet). Using the Fock operator, we then determine (in a manner not specified here) more accurate (although
still very rough) spinorbotals

ϕ
(1)
1 , ϕ

(1)
2 , . . . , ϕ

(1)
N (324)

Using these, we again construct the Fock operator; it should now be more closer to the accurate one. And so on,
and so on, we do the iterations and once we finish. We can make the decision to finish, for example, if the difference
between two outputs of the subsequent iterations becomes negligible. Then the spinorbitals ϕi will be consistent
with the Fock operator. The resulting elecrostatic field from the considered electrons is called self-consistent field
(SCF). Thus, each electron moves in this SCF. It is actually a field created by QM averaging of the field from the other
electrons and, in addition, the field from the nuclei is also accounted for. The term mean field49 is also being used,
although in also a more general sense.

An alternative, and nowadays more and more frequently used way to solve the HFE, is the direct minimisation of
the HF functional. The advantage of this method is its higher robustness, as it is a direct application of the variation
principle.

The Energy of the Ground State. This energy is given by the minimum of the functional (291). Because ϕi are
orthogonal, we obtain (assuming that they are the minimising spinorbitals)

EHF =
N∑
i=1

⟨ϕi|ĥ|ϕi⟩+
1

2

N∑
i,j=1

〈
ϕiϕj

∣∣r−1
12

∣∣ϕiϕj

〉
− 1

2

N∑
i,j=1

〈
ϕiϕj

∣∣r−1
12

∣∣ϕjϕi

〉
(325)

Using the expressions (314) and (315) for the Coulombov and exchange operators, we can also write the HF energy
as follows:

EHF =
N∑
i=1

∫
dx ϕ∗

i (x)

{
ĥ(x) +

1

2

N∑
j=1

[
Ĵj(x)− K̂j(x)

]}
ϕi(x) (326)

The difference between the exact non-relativistic energy and the Hartree-Fock energy is called the correlation
energy:

Ecorr = E0 − EHF < 0 (327)

(Here we consider a ground state only.) Its magnitude is small in comparison with the magnitude of the total energy
E0, of the order of e.g. one percent of the total energy. Nevertheless, the effects associated with electron correlation
use to be important. Determining the ground state energy and wave function beyond the HF method is still a major
and fundamental challenge in the study of electronic structure. In cases of large systems (large molecules, clusters
or crystals), it often happens that even current methods and computational resources do not make it possible to
calculate satisfactorily ground-state energy and wave function of a given system.

49also in statistical physics
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9.4 A Mathematical Excursion: Matrix Representations, Unitary Transformations

We have not taken too much from this section (9.4), only those parts that are written
in the larger font. By the way, these parts are just a simple generalization of what
has been taken over in the Computational Physics course about diagonalisation of a
symmetric matrix and expressing this diagonalization by an orthogonal transformation.
The generalisation of a symmetric matrix is hermitian matrix. The generalisation of
an orthogonal matrix is a unitary matrix.

Matrix representations. Majme sadu navzájom lineárne nezávislých funkciíφn tvoriacich úplnú sústavu funkcií ; úplnú aspoň
v tom zmysle, že pomocou ich lineárnej kombinácie vieme s požadovanou presnosťou vyjadriť ľubovoľnú funkciu, ktorú
pri štúdiu daného problému vyjadriť potrebujeme. Tú sústavu (sadu, postupnosť) funkcií potom nazývame báza. Samotné
funkcie voláme bázové funkcie. Okrem lineárnej nezávislosti predpokladajme aj ich vzájomnú ortogonálnosť a normovanosť
na 1: ∫

φ∗
mφn dτ = ⟨φm|φn⟩ = δmn (328)

pričom integrujeme cez bližšie nešpecifikované premenné, od ktorých tie funkcie závisia. Tých integračných premenných
môže byť veľa a nemusia byť len spojité (ako napr. x, y, z), ale môžu byť medzi nimi aj spinové súradnice, v prípade ktorých
sa sumuje, nie integruje. Symboly ako napr. φn nazývame funkcie. Závisia od konkrétnych premenných, napr. x, y, z.
Abstraktné zápisy ako |φn⟩ nazývajme vektory.

Uvažujme ľubovoľný lineárny operátor Â. Pôsobme ním na ľubovoľnú funkciu f takú, ktorá sa dá vyjadriť ako lineárna
kombinácia bázových funkcií φn. Výsledkom bude nejaká iná funkcia. Označíme si ju g:

Âf = g , t. j. Â|f⟩ = |g⟩ (329)

Keďže {φn} je úplná sústava, aj g sa musí dať vyjadriť ako ich lineárna kombinácia. Zapíšme to pre obe tie funkcie takto:

f =
∑
n

fnφn , g =
∑
n

gnφn (330)

kde fn a gn sú koeficienty v tých lineárnych kombináciách (rozvojové koeficienty).50 Dosaďme tieto rozvoje do (329).
Dostaneme

Â
∑
n

fnφn =
∑
n

gnφn

Lineárny operátor prejde cez rozvojové koeficienty (nejaké komplexné čísla) triviálne podľa Definície 2 (10). Tak dostaneme∑
n

fnÂφn =
∑
n

gnφn (331)

Pôsobením Â na bázovú funkciu φn vznikne funkcia Âφn, ktorá sa tiež dá zapísať v danej báze:

Âφn =
∑
k

Akn φk (332)

Príslušné rozvojové koeficienty sme teda označili Akn. Index n je tam potrebný, lebo ide o rozvoj funkcie φn. Pri pôsobení
Â na inú bázovú funkciu, napr. na φn′ , by sme totiž dostali iné rozvojové koeficienty (Akn′ ), a preto ich treba označovať aj
indexom bázovej funkcie, na ktorú pôsobia. Dosaďme rozvoj (332) do (331):∑

n

fn
∑
k

Aknφk =
∑
n

gnφn

Prenásobme túto rovnicu zľava funkciou φ∗
m a preintegrujme:∑

n

∑
k

fnAkn

∫
φ∗
mφk dτ =

∑
n

gn

∫
φ∗
mφn dτ

Využijeme ortonormalitu (328) bázových funkcií, čím dostaneme

∑
n

Amnfn = gm (333)

To je sústava algebraických rovníc, ktoré dávajú do vzťahu tri rôzne sady rozvojových koeficientov. Sady koeficientov fn,
gn definované rovnicami (330) sa dajú zapísať aj ako stĺpcové vektory. Koeficienty Amn zasa tvoria štvorcovú maticu. Ak

50Netreba si ich teda popliesť s nejakými funkciami. Inde sme totiž symboly typu fn používali ako bázové funkcie, pričom rozvojové
koeficienty sme značili inak; pozri napr. stať 6.1.1 o variačnej metóde.
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si počet bázových funkcií označíme N a indexovať začneme od 1, tak posledne napísaná sústava sa dá zapísať aj maticovo-
vektorovo: A11 . . . A1N

...
...

AN1 . . . ANN


 f1

...
fN

 =

 g1
...
gN

 (334)

Aj (333) je maticovo-vektorový zápis, ale v zložkách. Aby sme plne pochopili aj význam koeficientov Amn, vráťme sa ku
rovnici (332), ktorou boli definované. Prenásobme ju zľava funkciou φ∗

m a preintegrujme:∫
φ∗
mÂφn dτ =

∑
k

Akn

∫
φ∗
mφk dτ =⇒ Amn =

∫
φ∗
m Â φn dτ = ⟨φm|Â|φn⟩ (335)

Keď teraz porovnáme abstraktnú rovnosť (329) so zápisom (333) alebo (334), môžeme skonštatovať, že tie maticovo-vektorové
zápisy predstavujú istú reprezentáciu abstraktného zápisu (329). Matica A s prvkami (335) je maticovou reprezentáciou
operátora Â v nami použitej báze {φn}. Vektor s prvkami fn je reprezentáciou funkcie f v danej báze. Obdobne vektor
prvkov gn.

Ak chceme explicitne vedieť, ako určíme koeficienty fn, gn, zoberieme definičné rovnice (330), prenásobíme ich zľava
φ∗
m, preintegrujeme a dostaneme (po premenovaní indexu)

fn =

∫
φ∗
n f dτ = ⟨φn|f⟩ , gn =

∫
φ∗
n g dτ = ⟨φn|g⟩ (336)

Ešte sa pozrime na maticovú reprezentáciu súčinu dvoch operátorov: Ĉ = ÂB̂. Nech Ĉ = ÂB̂ pôsobí na nejakú funkciu f ,
následkom čoho vznikne funkcia h: Ĉf = h. V reprezentácií pomocou danej bázy to zapíšeme∑

n

Cmnfn = hm (337)

Ako vyjadríme Cmn pomocou maticových prvkov Amn a Bmn? Pomocou vyjadrenia Cmn =
∫
φ∗
mÂB̂φn dτ nie je ťažké

sa dopracovať k výsledku
Cmn =

∑
k

AmkBkn (338)

t. j. ide o bežné násobenie matíc, C = AB, čo je aj intuitívne očakávaný výsledok.
Ešte doplňme, že podľa Vety 2 – pozri (12) – pre ľubovoľný lineárny operátor Â, ku ktorému existuje hermitovsky

združený, platí ∫
φ∗
mÂφn dτ =

∫
(Â†φm)∗φn dτ =⇒ A∗

mn = (A†)nm (339)

Maticovou reprezentáciou hermitovsky združeného operátora teda jematicaA†, ktorá je transponovaná a navyše komplexne
združená ku matici A. V špeciálnom prípade, ak by sme mali nejaký hermitovský operátor Ĥ , t. j. platilo by

Ĥ† = Ĥ (340)

tak pre ich maticové reprezentácie by sme dostali
H∗

mn = Hnm (341)

z čoho vyplýva, že diagonálne prvky sú reálne. To je známa a dôležitá vlastnosť hermitovských matíc a úzko súvisí s tým,
že vlastné hodnoty hermitovského operátora sú reálne čísla.

Unitary Transformations.

Definícia 7: Lineárny spojitý [2] operátor Û sa nazýva unitárny, ak k nemu existuje inverzný operátor Û−1 a platí

Û†Û = 1̂ (342)

kde 1̂ je jednotkový operátor.

Čiže Û−1 = Û† a následne dostávame, že platí aj Û Û† = 1̂. Pre maticové reprezentácie v nejakej zvolenej ortonormovanej
báze potom musí platiť

U†U = UU† = I (343)

kde I je štvorcová matica, ktorá má na diagonále jednotky a všade inde nuly (jednotková matica). Významnou matem-
atickou vlastnosťou unitárnych operátorov je, že zachovávajú skalárny súčin. Nech |f⟩ a |g⟩ sú nejaké vektory. Unitárne
transformované vektory sú

|f ′⟩ = Û |f⟩ , |g′⟩ = Û |g⟩ (344)
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Potom
⟨f ′|g′⟩ =

∫
f ′∗g′ dτ =

∫ (
Ûf
)∗ (

Ûg
)

dτ =

∫
f∗Û†

(
Ûg
)

dτ =

∫
f∗g dτ

teda
⟨f ′|g′⟩ = ⟨f |g⟩ (345)

Aj maticový element nejakého operátora Â, teda číslo

⟨f |Â|g⟩

je skalárny súčin, konkrétne súčin vektorov |f⟩ a Â|g⟩. Preto sa maticové elementy musia unitárnou transformáciou
zachovávať. Počítajme, čo z toho vyplynie.

⟨f |Â|g⟩ =
∫
f∗Â g dτ =

∫
f∗Û† Û Â Û†︸ ︷︷ ︸

Â′

Ûg︸︷︷︸
g′

dτ =

∫
f∗Û†Â′g′ dτ =

∫ (
Ûf
)∗
Â′g′ dτ =

∫
f ′∗Â′g′ dτ

teda
⟨f ′|Â′|g′⟩ = ⟨f |Â|g⟩ (346)

Zavedené označenie
Â′ = Û Â Û† (347)

teda treba rozumieť ako unitárne transformovaný operátor Â. Operátory sa teda unitárne transformujú tak, že ich treba
násobiť zľava aj sprava unitárnymi operátormi Û a Û†. A tak isto to bude aj s maticovými reprezentáciami operátorov: ak
A je matica reprezentujúca operátor Â a U , U† sú matice reprezentujúce unitárne operátory Û , Û†, tak unitárne transfor-
movaná matica bude A′ = UAU†.

An extremely important feature of hermitian matrices is that they can be diagonalised by unitary transformations. It
should be understood as follows: LetH be a hermitianN×N matrix. Then is hasN eigenvalues, in general different
from each other. Denote them by E1, …, EN , According toTheorem 4 of section 1.2.5, they are real. The corresponding
eigenvectors are columnar. Suppose that j-th eigenvector has its components denoted byXij , i ∈ {1, . . . , N}, and,
of course, also j ∈ {1, . . . , N}.H11 . . . H1N

... ...
HN1 . . . HNN


X1j

...
XNj

 = Ej

X1j
...

XNj

 , j ∈ {1, . . . , N} (348)

According to Theorem 5, in section 1.2.5, the individual vectors are orthogonal to each other and we will normalise
them to 1, so they will be orthonormalised. When we stack all the N eigenvectors next to each other, we get the
square matrix

X =

X11 . . . X1N
... ...

XN1 . . . XNN

 (349)

We express the mentioned orthonormality of the eigenvectors, specifically of the i-th one to the j-th one as follows:

(X∗
1i, . . . , X

∗
Ni)

X1j
...

XNj

 = δij , i.e.
N∑
k=1

X∗
kiXkj = δij , i, j ∈ {1, 2, . . . , N} (350)

The last written system of equations for the orthogonality can be rewritten in the form

N∑
k=1

(X†)ikXkj = δij , i, j = 1, 2, . . . , N (351)

using the compact notation X†X = I , which corresponds to the definition of the unitary operator [cf. (342)];
specifically, we now have the operator represented by the matrix X . I is the identity matrix51 N × N . Thus, we
have proved this important finding:

51not a unit or unity matrix! A unit matrix is such that has units (1) everywhere.
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Eigenvectors of a hermitian matrix form a unitary matrix.

Using the X , (348), which is a system of systems of equations, can be written as follows:H11 . . . H1N
... ...

HN1 . . . HNN


X11 . . . X1N

... ...
XN1 . . . XNN

 =

X11 . . . X1N
... ...

XN1 . . . XNN


E1 . . . 0

... ...
0 . . . EN

 (352)

or compactly
HX = Xdiag(E) (353)

where diag(E) is a matrix that has the values E1, …, EN on its diagonal and zeros everywhere else. Let us now
multiple the last equation by the matrix X† from the left. Because it is unitary, we get

diag(E) = X†HX (354)

Thus, the diagonal matrix of the eigenvalues of the hermitian matrix H is obtained by a certain unitary transform-
ation of the matrix H . Specifically, by such a unitary transformation, whose matrix is equal to (349). Therefore,
calculation of eigenvalues of a matrix is often being called diagonalisation of the matrix. In doing this, we can also
calculate the eigenvectors. Usually we can calculate both the eigenvalues and the eigenvectors with one iterative
algorithm [9].

A special case of a hermitian matrix is the symmetric matrix. This is whenH is real. And analogously, a special
case of a unitary matrix is the orthogonal matrix. This one is also real. Thus, a symmetric matrix can be diagonalised
by an orthogonal transformation.

9.5 The Canonical Form of the Hartree-Fock Equations

Again, in this part you only need to look at what is typeset in the larger font.

Imagine that we have solved the HF equations, (322). Hence we know the single-particle spinorbitals ϕi

as well as the matrix λ. Recall, however, that we were concerned with determining the wave function and the
eigenenergy of the ground state of a many-particle system defined by Hamiltonian (277), i.e. we were trying to find
an (approximate) solution of the problem ĤΦ = EΦ for the ground state. We were searching that many-particle
function in the form of a Slater determinant (274) [or (275)] and the approximate ground-state energy is given by
the minimum of the functional (291); it is sufficient to substitute the determined optimal spinorbitals into it.

Let us try to investigate what happens to the determinantal wave function Φ if we apply some unitary trans-
formation to the spinorbitals ϕi [7]. U11 . . . U1N

... ...
UN1 . . . UNN


ϕ1

...
ϕN

 =

ϕ′
1
...
ϕ′
N

 (355)

We get some new spinorbitals which we denoted by ϕ′
i. Briefly, we accomplished the transformation

{ϕi} −→ {ϕ′
i} , kde ϕ′

i =
N∑
j=1

Uijϕj (356)

What will be the value of the determinant Φ′ composed of the transformed spinorbitals?

Najprv si zapíšme maticu, ktorú používame pri skladaní Slaterovho determinantu Φ podľa (275). Označme juM :

M =

ϕ1(1) . . . ϕ1(N)
...

...
ϕN (1) . . . ϕN (N)

 (357)
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Všimnime si, že maticu transformovaných spinorbitálov ϕ′i teraz dostaneme maticovým násobením:U11 . . . U1N

...
...

UN1 . . . UNN


ϕ1(1) . . . ϕ1(N)

...
...

ϕN (1) . . . ϕN (N)

 =

ϕ′1(1) . . . ϕ′1(N)
...

...
ϕ′N (1) . . . ϕ′N (N)

 (358)

alebo stručne a s prehodeným poradím strán takto:

M ′ = UM (359)

Z algebry je známe, že pre (štvorcové) matice platí

det(AB) = det(A) det(B) (360)

Preto
det(M ′)︸ ︷︷ ︸

Φ′

= det(U) det(M)︸ ︷︷ ︸
Φ

(361)

Pre unitárne matice z definície platí
U†U = I

Preto
1 = det(U†) det(U) = [det(U)]∗ det(U) = | det(U)|2

čiže sa dá písať
det(U) = eiϱ (362)

kde ϱ je nejaké reálne číslo (ktorého hodnotu sme nezistili, ale ani nie je dôležitá).

According to (361), the transformed Slater determinant will be

Φ′ = Φeiϱ (363)

that is, it differs from the original one by a phase factor only. However, it is known from QM that multiplying the
wave function of a system by any constant (of magnitude 1 for correct normalisation) does not change anything on
the physical properties of the system.

Naozaj: ak nejaká Ψ(t) je riešením SchR

ih̄∂Ψ(t)

∂t
= Ĥ(t)Ψ(t) (364)

tak vynásobením tejto rovnice ľubovoľnou konštantou napr. tvaru eiϱ vidíme, že aj Ψ′(t) = Ψ(t)eiϱ je riešením SchR pre
ten istý hamiltonián. A úplne obdobne to platí aj pre stacionárnu SchR a náš jednodeterminantový stav Φ.

Therefore, if we find some spinorbitals {ϕi}N1 using the HF method and then we calculate some new spinorbitals
from them by an arbitrary unitary transformation, then these new ones will in principle be as good a solution of the
HF equations as the original spinorbitals. True physical significance has the many-particle wave function, not the
single-particle spinorbitals. These are just auxiliary “building blocks” to express the many-particle wave function.
Since energy is a physical quantity, it must be conserved in unitary transformations of spinorbitals; is invariant
under them. We would easily be convinced of this by explicit calculation by evaluating the functional EHF[ϕ] (291)
for ϕ′. We would get EHF[ϕ

′] = EHF[ϕ].
It turns out the the Fock operator (321) is invariant under unitary transformations of the spinorbitals (it

does not change if we replace ϕi with ϕ′
i).

Ideme to dokázať. Najprv sa pozrime na člen ĥ(1) vo Fockovom operátore. Tento člen od spinorbitálov nezávisí, a teda je,
celkom triviálne, invariantný voči ich zmenám. Ďalšou skupinou členov je súčet Coulombových operátorov. Počítajme, aký
bude, keď ho vyjadríme pomocou transformovaných spinorbitálov (356).

N∑
j=1

Ĵ ′
j (1) =

N∑
j=1

∫
dx2 ϕ′∗j (2) r−1

12 ϕ
′
j(2) =

N∑
j=1

∫
dx2

N∑
k,l=1

U∗
jkUjl ϕ

∗
k(2) r

−1
12 ϕl(2) =

=

∫
dx2

N∑
k,l=1

ϕ∗k(2) r
−1
12 ϕl(2)

N∑
j=1

U∗
jkUjl︸ ︷︷ ︸
δkl

=

∫
dx2

N∑
k=1

ϕ∗k(2) r
−1
12 ϕk(2) =

N∑
j=1

Ĵj(1)
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Súčet Coulombových operátorov je teda invariantný voči ľubovoľnej unitárnej transformácii spinorbitálov. Ešte overme
invariantnosť súčtu výmenných operátorov. To sa spraví trochu náročnejšie, lebo výmenný operátor má zložitejšie štruk-
túrovanú formu; pozri poznámku 47 pod čiarou a rovnice (315), (316), (317), (318) a (319). Počítajme teda pôsobenie K̂′

j(1)
na ľubovoľnú funkciu ϕ:

N∑
j=1

K̂′
j(1)ϕ(1) =

N∑
j=1

∫
dx2 ϕ′∗j (2) r−1

12 ϕ(2)ϕ
′
j(1) =

N∑
j=1

∫
dx2

[
N∑

m=1

U∗
jmϕ

∗
m(2)

]
r−1
12 ϕ(2)

[
N∑

n=1

Ujnϕn(1)

]
Tak isto ako pri dokazovaní invariantnosti Coulombovho operátora, aj tu sa suma cez j dá vypočítať, teda

N∑
j=1

U∗
jmUjn = δmn

Tak dostávame
N∑
j=1

K̂′
j(1)ϕ(1) =

N∑
j=1

K̂j(1)ϕ(1)

pre ľubovoľnú funkciu ϕ. Aby toto mohlo byť splnené, musí platiť aj
N∑
j=1

K̂′
j(1) =

N∑
j=1

K̂j(1) (365)

čiže aj súčet výmenných operátorov je invariantný voči U . Tak zisťujeme, že Fockov operátor (321) je tiež invariantný, čo
bolo treba dokázať.

Now take the HF equations in their compact form (322) and write them down in the matrix-vector notation:

f̂(1)

ϕ1(1)
...

ϕN(1)

 =

λ11 . . . λ1N
... ...

λN1 . . . λNN


ϕ1(1)

...
ϕN(1)

 (366)

or compactly
f̂(1)ϕ⃗(1) = λ ϕ⃗(1) (367)

We multiply the last written equation from the left by the unitary matrix and insert the identity matrix in the form
U †U into the equation (by this, nothing is changed but the identity matrix is suitable to be inserted there):

f̂(1)Uϕ(1) = U λU †U ϕ(1) (368)

On the left-hand side, it was correct to interchange the matrix U , contaning numerical quantities only, with the
operator f̂ [f̂(1) is just a single-component operator, not a matrix or vector]. The matrix λ is hermitian; it must be,
otherwise the functionalEHF would not be real, but it is defined as real. We have learn above that a hermitian matrix
can be diagonalised by a unitary transformation. Hence, also for our matrix λ there exists a unitary transformation
that accomplishes its diagonalisation. So we get

f̂(1)ϕ′(1) = diag(E) ϕ′(1) (369)

where diag(E) is a matrix that has the eigenvalues of the matrix λ on the diagonal and zeros everywhere else. If we
write it down in components and without the primes for simplicity, we arrive at

f̂(x)ϕi(x) = Ei ϕi(x) (370)

This is the canonical form of the HF equations. We obtained it using a unitary transformation of the originaly
found spinorbitals. Thus, the spinorbitals are not the same as in (320), but for simplicity we use the same notation
for the canonical orbitals. However, the operator f̂ is the same because ot its invariance. As we have said above,
the original spinorbitals yield the same energy EHF as the new, transformed ones. Thus, it cannot be said that some
are more physical than the other. But some (usually the diagonalising ones) may be more practical than others.

Especially in quantum chemistry, the HFE are a basis or starting calculation for several more accurate (but
computationally more demanding) ab initio methods.52

52Clasically [ab iˈnitió], in later times [ab iˈnicio/iˈnício]; this is a term (from Latin) being used in scientific literature. In English, they
alternatively use the term first principles; these are thus methods that calculate the electronic structure only from the basic laws of physics,
i.e. from the SchE, without a use of empirical parameters or formulae. An ab initio method is primarily the Hartree-Fock one, which is,
however, relatively inaccurate because it does not include the correlation energy.
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9.6 Interpretation of the Solutions of the HF Equations

Also in this part you only need to look at what is typeset in the larger font.

The solutions of HF equations (370) are the spinorbitals ϕi and the eigenenergies Ei. An important following
result is also the approximate energy EHF [see (325) of the ground state of the system under study. The many-body
wave function Φ is rarely evaluated; it is not necessary, it is sufficient to work with the single-particle spinorbitals.
Using them, as we have seen, the energy EHF can be calculated as well as other physical quantities. As we have
found out and stated beneath equation (364), the spinorbitals alone do not have an unambiguos physical significance.
The canonical HF spinorbitals obtained by solving (370) are no more physical than any other related to them by a
unitary transformation. Nevertheless, either the canonical spinorbitals (or only the corresponding orbitals) or some
convenient unitarily transfomed ones exhibiting certain localisation in accordance with our intuition, can often be
useful for better understanding chemical bonds or at least to give valuable intuitive insights. Such considerations,
however, sometimes do not have a sufficient rational basis.

9.6.1 The Orbital Energies and the Total Energy

(We should talk about spinorbital energies, because the Ei that we found, correspond to spinorbitals. But for
brevity, let us call them orbital energies.)

Z kanonických HF rovníc (370), v ktorých vystupuje Fockov operátor (321), dostávame

Ei = ⟨ϕi|f̂ |ϕi⟩ = ⟨ϕi|ĥ|ϕi⟩+
N∑
j=1

[
⟨ϕi|Ĵj |ϕi⟩ − ⟨ϕi|K̂j |ϕi⟩

]
(371)

Orbitálnu energiu Ei môžme interpretovať ako energiu elektrónu obsadzujúceho stav ϕi nachádzajúceho sa v elektro-
statickom vonkajšom poli plus v spriemerovanom poli ostatnýchN−1 elektrónov amínus výmenná energia. Za Coulombov
a výmenný operátor dosadíme podľa ich definícií (314) a (315). Zároveň si aj zavedieme štandardné kompaktné značenie pre
jedno a dvojčasticové maticové elementy, ktoré veľmi zostručňuje zápis a používa sa najmä v HF teórii. Pomerne kompaktné
značenie sme zaviedli už rovnicou (290), najmä v porovnaní s (289). Štandardne sa však v učebniciach kvantovej chémie
používa ešte stručnejší zápis [7], a to buď „fyzikálny“ alebo „chemický“. My si uvedieme ten fyzikálny:

⟨i|h|j⟩ = ⟨ϕi|h|ϕj⟩ =

∫
dx ϕ∗i (x) ĥ ϕ∗j (x) (372)

⟨ij|kl⟩ = ⟨ϕiϕj |ϕkϕl⟩ =

∫
dx1 dx2 ϕ∗i (x1)ϕ∗j (x2) r−1

12 ϕk(x1)ϕl(x2) (373)

⟨ij||kl⟩ = ⟨ij|kl⟩ − ⟨ij|lk⟩ =
∫

dx1 dx2 ϕ∗i (x1)ϕ∗j (x2) r−1
12 [ϕk(x1)ϕl(x2)− ϕl(x1)ϕk(x2)] (374)

Orbitálne energie teraz môžeme zapísať takto:

Ei = ⟨i|h|i⟩+
N∑
j=1

( ⟨ij|ij⟩ − ⟨ij|ji⟩ ) = ⟨i|h|i⟩+
N∑
j=1

⟨ij||ij⟩ (375)

Pomocou stručného značenia zapíšeme aj HF energiu (325):

EHF =

N∑
i=1

⟨i|h|i⟩+ 1

2

N∑
i,j=1

⟨ij||ij⟩ (376)

Let us compare the Hartree-Fock energy (325) of the ground state with the sum of all the orbital energies. We see
that

EHF ̸=
N∑
i=1

Ei (377)

Thus, the ground-state energy is not the sum of the energies of the individual electrons.

N∑
i=1

Ei =
N∑
i=1

⟨i|h|i⟩+
N∑

i,j=1

⟨ij||ij⟩ (378)

This is because each interaction enters the above sum of the orbital energies twice; the factor of 1/2 is missing there.
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9.6.2 The Orbital Energies and the Koopmans Theorem

Also in this section you only need to look at what is typeset in the larger font.
We are going to examine the physical meaning of the orbital energies. However, we first realise that the Fock

operator, (321), has an infinite number of eigenfunctions. By solving the HF equations, we get the sequences of the
lowest N functions and the corresponding energies that we have studied so far: {ϕi, Ei}Ni=1. However, by solving
the HF equations, we also find the Fock operator, and for this we can then calculate the rest of the eigensystem:
{ϕi, Ei}∞i=N+1; see equations (370). According to the literature [7], we will agree on the following notation for
the indices: The indices a, b, . . . will be used for i ∈ {1, 2, . . . , N}, thus for the lowest N single-electron states.
These states describe electrons forming the Slater many-particle function; therefore, we call them occupied states
or spinorbitals. The indices r, s, . . . will be used for i > N , that is for the unoccupied spinorbitals,o which are
usually called empty or (especially in quantum-chemistry literature) virtual. Really: there are only N electrons
in the system, and therefore, if the system is in the ground state (Φ), then only N of the lowest spinorbitals can
be occupied, each by one electron. Possible excited states of the system can then be at least roughly described by
creating a new determinant in which one of the occupied spinorbitals ϕa is replaced by one of the empty spinorbitals
ϕr.

It should be noted that statements of the type “electron occupies the level i” (and has energy Ei and is described
by the wave function ϕi) are inaccurate. In fact, the system is described by some many-particle function. However,
such statemens or expressions correspond to the one-particle picture provided by the HFmethod, are also intuitively
understandable, and are therefore it is convenient to use them.

S využitím (375) a identity [podľa (374)]
⟨ii||ii⟩ = 0 (379)

hneď vieme napísať

Ea = ⟨a|h|a⟩+
N∑
b=1
̸=a

⟨ab||ba⟩ (380)

Er = ⟨r|h|r⟩+
N∑
b=1

⟨rb||rb⟩ (381)

V rovnici pre obsadený stav sme teda mohli zo sumovania vypustiť člen, ktorý by bol aj tak nulový.
Uvažujme teraz tri fyzikálne sústavy:

1. Tú N -elektrónovú, pre ktorú sme počítali základný stav HF metódou. Označme príslušný determinant ket vektorom
aj s indexom N a dolným indexom 0 (prízvukujúcim, že ide o základný stav). Zapíšme pritom aj príslušne označenú
celkovú energiu sústavy (376).

∣∣NΦ0

〉
, NE0 =

〈
NΦ0

∣∣∣Ĥ∣∣∣ NΦ0

〉
=

N∑
a=1

⟨a|h|a⟩+ 1

2

N∑
a,b=1

⟨ab||ab⟩ (382)

2. (N − 1)-elektrónovú sústavu takú, ktorú získame vytrhnutím elektrónu z (obsadenej) hladiny c základného stavu.
Ostatné elektróny pritom necháme v takých spinorbitáloch, a akých sú. Príslušný determinant a energiu zapíšme
obdobne ako v predošlom bode:

∣∣N−1Φc

〉
, N−1Ec =

〈
N−1Φc

∣∣∣Ĥ∣∣∣ N−1Φc

〉
=

N∑
a=1
̸=c

⟨a|h|a⟩+ 1

2

N∑
a=1
̸=c

N∑
b=1
̸=c

⟨ab||ab⟩ (383)

Je zrejmé, že vybraním jedného elektrónu zmeníme elektrické pole vo vnútri sústavy a stav |N−1Φc⟩ nebude základ-
ným stavom N − 1 elektrónovej sústavy ani v priblížení HF metódy. HF základný stav by sme dostali tak, že by sme
spinorbitály existujúcich N − 1 elektrónov prispôsobili novému poľu, teda by sme vlastne museli spraviť nový HF
výpočet. Stav

∣∣N−1Φc

〉
však často môžeme pokladať aspoň za približný (N − 1)-elektrónový základný stav.

3. (N + 1)-elektrónovú sústavu takú, ktorú získame dodaním elektrónu do (prázdnej) hladiny r základného stavu. Os-
tatné elektróny pritom opäť necháme v takých spinorbitáloch, a akých sú. Príslušný determinant a energiu označíme
podobne ako v predošlých bodoch, ale energiu vypočítame len univerzálnou formulou platnou pre ľubovoľný jedno-
determinantový stav:

∣∣N+1Φr
〉
, N+1Er =

〈
N+1Φr

∣∣∣Ĥ∣∣∣ N+1Φr
〉
=

occ∑
i

⟨i|h|i⟩+ 1

2

occ∑
i,j

⟨ij||ij⟩ (384)
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Rozsah occ znamená, že sa sumuje cez všetky obsadené spinorbitály, nech sú to ktorékoľvek. Konkretizácia preN +1
elektrónov v hladinách 1, 2, . . . , N , (. . . ), r je jednoduchá, ale vyžaduje viac písania.

The ionisation energy (sometime not very properly called ionisation potential) of an atom, molecule or ion is
the amount of energy needed to release an electron from the electron shell of given system (the atom, …). Thus,
within the one-determinant approximation (which is used in the HF method), we could consider as the approximate
ionisation energy the energy needed to release an electron from the highest occupied (theN -th) level. However, for
the purpose of interpreting the orbital energies, consider the release of an electron from any of the first N levels.
The ionisation energy defined in such a more general sense is:

I = N−1Ec − NE0 (385)
Jeho výpočet na základe vyjadrení (382), (383) a (379) nie je ťažký ani zdĺhavý. Využíva aj identity

⟨ij|kl⟩ = ⟨ji|lk⟩ , ⟨ij||kl⟩ = ⟨ji||lk⟩ (386)

vyplývajúce z definícií (373) a (374). Výsledkom je

I = −Ec (387)
The electron affinity is defined in an analogous way: when we add another electron to the molecule, the energy
of the molecule usually decreases. The more it decreases, the greater the electron affinity, which is then a positive
value.

Thus, its definition in the framework of the HF theory is

A = NE0 − N+1Er (388)

The calculation is again not difficult and its result is

A = −Er (389)

Expression (387) and (389) for the ionisation energy and the electron affinity form the content of the Koopmans
theorem. For reasons that we will not be explaining here, the ionisation energies according to (387) are a relatively
good approximation to experimental values, while the electron affinities according to (389) are usually quite wrong.
They are even often negative, although they should be positive [7].

An important quantity is also the electronegativity EN of an atom or a molecule. Its definition according to
Mulliken is

EN =
I + A

2
(390)

9.7 The Spin-Restricted and Unrestricted Variants of the HF Method

In solving the HFE, the unknown spinorbitals are expanded in a chosen basis of known functions and the coefficients
of this expansion are then the unknowns to be determined. Aswe have seen, theHFE can be transfomed to form (263)
from motivation section 9.1. [It is even a simpler form than (E.29) at the HE, since the effective Hamiltonian in (263)
is the same for all spinorbitals – there is no i index at it.] This leads to the idea or concept of the energy levels Ei
and also to the concept that an electron with wave function ϕi occupies the energy level Ei. It is often the case that
these levels are doubly degenerate, that is

E1 = E2 , E3 = E4 , . . . . . . . . . , EN−1 = EN
and the spinorbitals ϕ1, ϕ2 then differ in their spin component only; similarly the spinorbitals ϕ3, ϕ4 have identical
spatial parts and differ in their spin parts only. And so on for all other pairs of the spinorbitals (if we properly
label them). In other words, each energy level is occupied by two electrons which differ in their spins only. One of
them has its spin “up”, the other “down”. We then say that the system (an atom, molecule or crystal) exhibits spin
degeneracy. In such case, only N/2 unknow spatial orbitals are to be determined. If for this or any other reason,
we force the spatial components of the pairs of the spinorbitals to be identical, we say about the spin-restricted
Hartree-Fock theory (or just restricted HF, in brief). It can well be used especially for systems with an even number
of electrons (but not for all such). The restricted HFE expressed in a particular non-orthogonal basis (e.g. in the
basis of the gaussian functions) are called the Roothan equations. If we do not require the identical pairs of the
spatial orbitals, we say about the unrestricted HF method or theory.
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10 The Homogeneous Electron Gas

For chemical reactions and electrical conductivity, especially the valence electrons of atoms or molecules, in-
cluding atoms in extended systems,53 are important. Among suchmaterials, conductive crystals, i.e. commonmetals
(which do not usually consist of a one monocrystal, but often considering a monocrystal of given material is suf-
ficient to study many of the material’s properties), have an important place. The simplest metals are the lighter
elements of Group 1 of the Mendeleev Periodic Table: alkali metals Li, Na, K. Their atoms have only one valence
(outer) electron. Thus, their highest electron shell is similar to the shell of the hydrogen atom, which is 1s1. E.g.
lithium has shells 1s2, 2s1, so its outer shell is only half full. The inner one is completely filled (i.e. closed) and
therefore relatively stable, inert. Alkali metals are also called simple.

If there are many atoms in the system, the valence electrons are only weakly bound in them, they easily jump
from atom to atom and thus move across the crystal lattice. It cannot be said that any valence electron would be
bound to a particular atom. In the case of a simple metal, all the valence electrons are thus weakly bound and
their energies are from a certain continuous energy interval (the conduction band). The conduction electrons in the
ground state (ideally at a temperature of T ≈ 0K) occupy only the lower half of the energy levels of the conduction
band.

A metal as a whole is electrically neutral under normal conditions. Due to the mobility of the conduction
electrons, their spatial distribution is such that electrical neutrality is also ensured locally. A significant deviation
from local neutrality under normal conditions in a metal is not even possible because there is not enough energy for
it. Thus, there is a compensating positive charge in a close neighbourhood of each electron. Therefore, the Coulomb
interaction between electrons is significantly screened. In the roughest approximation, we can even look at electrons
as non-interacting. Thus, to understand some of the basic properties of a metal, it is sufficient to consider conduction
electrons as a gas of non-interacting (independent) electrons.

10.1 Non-Interacting Electrons

Consider a homogeneous gas of non-interacting 1/2-spin fermions occupying a macroscopic (sufficiently large)
volume. We want to calcuate their total energy. By its nature, it will certainly be a kinetic energy, because non-
interacting particles cannot have a potential energy. Their mutual independence means that at the beginning, it will
be sufficient to examine properties of one such electron. Obviously, if the space where those electrons are located is
large enough, it doesn’t matter if the space has a shape of a cuboid, a sphere, a cube, and so on. Across a sufficiently
large part of the considered space, the wave function of such an electron – a free particle – can be described as a
plane wave:

ψk⃗(r⃗) = Ae i k⃗.r⃗ = Ae i (kxx+kyy+kzz) (391)
and the corresponding eigenenergy is

Ek⃗ =
h̄2k2

2m
(392)

A is an unspecified normalisation constant. Since we now assume truly independent particles, and not those that
would interact at least through a mean field in the HF method, the total energy of the gas will be the sum of the
energies of the individual particles [cf. (377)]. And the many-particle wave function will be a Slater determinant
build of one-particle functions. However, there is still one condition that otherwise independent electrons must
respect: the Pauli principle. The principle implies for a given system that the wave function ψk⃗(r⃗) can describe no
more than two electrons; if they are two, they must differ in the values of their spins. In consequence, the energy
level Ek⃗ can be occupied by no more than two electrins differing in their spins. Since electrons in matter tend to
occupy the lowest possible energy levels at low temperatures, the individual levels will be occupied starting from
the lowest one up to a certain higher level. Note that if there were no Pauli principle, all (non-interacting) electrons
would occupy the lowest possible energy level. Thus, although in the Hamiltonian

Ĥ =
N∑
i=1

− h̄2

2m
∇⃗2

i (393)

53They can be e.g. crystals, which are condensed substances with periodic repetition of a certain group of atoms. But they can also be
non-periodic solids, which can often be described as amorphous.
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there is no interaction, the Pauli principle still causes that even the independent fermions at least “know” that their
neighbours already occupied some level.

There are no restrictions of the values of the wave vector k⃗. This may lead to technical difficulties, for example
how to calculate summations over all occupied states. Also, how to normalise a plane wave in the infinite space.
This is usually solved by introducing periodic boundary conditions (PBC).54 Instead of the infinite space, we imagine
only a certain section it having the shape of (in the simplest case) a cube with the side L and we impose the PBC on
the wave functions:

ψk⃗(x+ L, y, z) = ψk⃗(x, y, z)

ψk⃗(x, y + L, z) = ψk⃗(x, y, z) ∀ x, y, z ∈ R
ψk⃗(x, y, z + L) = ψk⃗(x, y, z)

(394)

In order for the first of the equations (394) to be satisfied, the following must hold:

exp { i [kx(x+ L) + kyy + kzz]} = exp { i [kxx+ kyy + kzz]} =⇒ exp ( ikxL) = 1 =⇒ kx = νx
2π

L

νx can be any integer. It apply analogously to the two other boundary conditions. Thus we get restrictions on the
real wave vectors which were otherwise arbitrary up to now. The values allowed by the defined boundary conditions
are

k⃗ν⃗ =
2π

L
(νx, νy, νz) , νx, νy, νz ∈ Z (395)

The form of the wave function, of course, remains as we found it at the beginning: (391). This time, however, we
can also find the normalisation constant A, because we will require that∫

(Ω)

∣∣ψk⃗(r⃗)
∣∣2 d3r = 1 (396)

where it is indicated that the integration goes over the volume Ω = L3. Hencem, the normalised one-electron wave
functions are

ψν⃗(r⃗) =
1√
Ω
e i k⃗ν⃗ .r⃗ (397)

The corresponding eigenenergies are calculated using formula (392). We can consider the numbers νx, νy, νz as
quantum numbers.

Of course, the introduction of the PBC is an artifical procedure. We can therefore ask whether the results we
get under its assumption will be correct. We first realize that we have chosen a very large, periodically replicated
volume Ω. The artificial forcing that after a huge distance L the wave function must begin to repeat its values has
a negligible effect on local physical quantities somewhere within the considered volume. In addition, we will see
that this hand-inserted artificial length and volume scale falls out of the results due to a fraction simplification. It is
therefore practical in our considerations, but its specific value is not important. Finally, when we think better about
PBC later, we will realise that by PBC we have only chosen a certain (regular) sampling of k-space.

Now let us calculate the total energy of the ground state of the gas in the volume Ω; gas is also everywhere else,
but we calculate the energy per volume. According to what we said under formula (392), the following applies:

E =
N∑
i=1

Ek⃗i (398)

In this, we assume that N is the number of electrons per volume Ω. The electrons occupy the states ψν⃗ . We can
imagine that we store the N given electrons in quantum states (labeled by) k⃗ν⃗ gradually, from the lowest state
(νx = νy = νz = 0) up to the higher ones. We place two electrons in each state, differing only in their spins. Since
we build the basic many-particle state of the system in this way, in occupying the states we cannot omit any of the
one-particle states, because the resulting N -electron state would not have the lowest possible energy. So, the total
energy E can be expressed by summation over wave vectors (395),

E =
∑
k⃗

gk⃗ Ek⃗ =
∞∑

νx=−∞

∞∑
νy=−∞

∞∑
νz=−∞

gk⃗ν⃗ Ek⃗ν⃗ (399)

54– a very common acronym in English texts on electronic structure.
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where gk⃗ are the occupation numbers: they are equal to 2 for the occupied states and 0 for the unoccupied ones. So,
we can formally sum over the all wave vectors. The mesh of the allowed k-vectors (395) is quite dense for large
L; neighboring vectors differ by 2π/L only. Therefore, it will be correct if we replace the summation in (399) by
integration:

E =
∑
k⃗

gk⃗ Ek⃗ −→
∫

d3k ρk⃗ gk⃗ Ek⃗ (400)

where
ρk⃗ =

1(
2π

L

)3 =
Ω

8π3
(401)

is the density of states in the 3-dimensional k-space and as it can be seen, it is constant, that is, independent of the
position k⃗ in the reciprocal space. Thus, by its physical dimension and also meaning, ρk⃗ is the number of k-vectors
(i.e. also the number opf states ψk⃗) per unit of volume of the reciprocal space:55

ρk⃗ =
dN
d3k (402)

The total energy E can then be calculated by integrating according to (400), while the occupation numbers gk⃗ are
nonzero only for wave vectors with sizes up to a certain maximum value, which we denote by kF. As can be seen
with consideration of (392), the integrated function will depend only on the size of the wave vector, not on its
direction. Therefore, it will be advantageous to integrate using spherical coordinates in reciprocal space:

E =
Ω

8π3

∫
d3k gk⃗ Ek⃗ =

Ω

8π3

∫ kF

0

dk k2
∫ π

0

dϑ sinϑ
∫ 2π

0

dφ 2
h̄2k2

2m
=

=
Ω

8π3
8π

h̄2

2m

∫ kF

0

dk k4 =
Ω

10π2

h̄2

m
k5F (403)

teda
E =

1

10π2

h̄2

m
k5F Ω (404)

We realise that we have integrated over the volume of a sphere with a centre at the origin and a radius kF. The
volume of this sphere in reciprocal space is:

ΩF =
4

3
π k3F

and it is the volume of the reciprocal space that is fully occupied by the givenN electrons in the ground state. In this
consideration, the already mentioned volume of (2π/L)3 per two electrons (differing in their spins) is accounted
for. Therefore, the total number of electrons can be expressed as

N = 2

4

3
π k3F(
2π

L

)3 =
1

3π2
k3F Ω

Let us introduce the notation
n =

N

Ω
(405)

It is density of electrons in the usual (they also say direct) space, that is, the basic parameter of the system under
study. Because we are studying a homogeneous electron gas, it is a constant. Thus, using the density, we can express
the above-introduced parameter

kF =
(
3π2n

)1/3 (406)

which is called the Fermi wave number and it is therefore the size of those wave vectors that are related to the highest
occupied states. It is noteworthy that the expression (406) remains valid for interacting electrons with density n

55Where necessary, differently defined densities of states are being used in literature.

80



too [12] (but we will not prove it). The energy of the energetically highest electrons of the gas at the temperature
of 0 K is called the Fermi energy:

EF =
h̄2k2F
2m

(407)

The average total energy E per one electron of the system can now be expressed using formulae (404), (405), (406)
and (407) as follows:

E

N
=

3

5
EF (408)

After a simple derivation, the result for the total energy expressed using the electron density becomes

E =
3

10

(
3π2
)2/3 h̄2

m
n5/3 Ω (409)

It is kinetic energy, because we obtained it for the gas of non-interacting electrons, which cannot have potential
energy. It is the sum of the kinetic energies of the individual electrons.

11 TheThomas-Fermi Model

Thus, formula (409) gives the energy of the non-interacting electron gas in the volume Ω. The model of Thomas
and Fermi (TF) extrapolates the validity of this relation to relatively general situations with inhomogeneous electron
densities in systems, such as atoms and possibly molecules, ions and extended systems. According to this model, we
imagine the volume of the system divided into small volumes∆Ω. In each of these volume elements, we assume the
validity of formula (409), taking the average density in this element for the density and the value∆Ω for its volume. It
is certainly no longer a non-interacting gas, butThomas and Fermi neverthelessmake the bold assumption described.
The total kinetic energy is thus obtained by summation over all volume elements ∆Ω, i.e. by integrating over the
entire volume of the system. In the atomic units (h̄ = m = 1) this energy gets

TTF[n] = CF

∫
n5/3(r⃗) d3r , CF =

3

10

(
3π2
)2/3 ≈ 2.871 (410)

TTF is called the Thomas-Fermi functional for kinetic energy. Thus, kinetic energy of the system of electrons is
calculated from the density only in the model. In order to be able to calculate the energy of the ground state of
the system, it is necessary to add other components to the energy. In the basic TF model [11, 12], the following is
added:
• The elektrostatic interaction of the charge density −en(r⃗) with the external potential uext(r⃗), which in the TF
theory usually is the potential coming from the atomic nucleus; however, if we study a more complex system, it
is the total electrostatic potential from the nuclei plus from other external sources:

uext(r⃗) =
∑
I

ZI

|r⃗ − R⃗I |
+ uother(r⃗) (411)

It is an external potential defined exactly as we used it in the HF theory [cf. (259)], but there we multiplied it by
the charge of electron, thus getting the potential energy operator vext(r⃗) from the potential. Thus, the following
holds in the SI system:

vext(r⃗) ≡ −euext(r⃗) (412)

In this section, however, we are otherwise using the Hartree atomic units in which vext(r⃗) ≡ −uext(r⃗). In addition,
in TF theory we do not work with operators, but only with classical concepts, so we do not even need the operator
symbol v̂ext here.

• The classical Hartree energy describing the electrostatic interaction of electrons with each other in terms of their
total density; there is such a contribution even in the HF theory, although it is primarily expressed there through
the orbitals; In the HF theory, the Hartree energy is in the Coulomb electrostatic integral.
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In this way we obtain the energy of the system as a functional of the density:

ETF[n] = CF

∫
n5/3(r⃗) d3r −

∫
uext(r⃗)n(r⃗) d3r +

1

2

∫
n(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′ ≡ TTF + Eext + EHartree (413)

This is the functional of theThomas-Fermi theory of atoms (and it could be evaluated for molecules and crystals too).
Its first term (kinetic energy) is non-classical, the second and third ones are the classical electrostatic interactions
of a continuous charge distribution with an external field and with itself, as we know them from the basic physics
course.

If the TF model is correct, then by finding the minimum of the functional ETF we determine the energy of the
ground state of the considered atom or other system. Thus, the task will be to find the minimising density n(r⃗).
That one must, however, integrate to the required number of electrons of the atom under study:∫

n(r⃗) d3r = N (414)

We impose this using a Lagrange multiplier as an equality constraint. Therefore, the augmented functional

ΩTF[n] = ETF[n]− µ

[∫
n(r⃗) d3r −N

]
(415)

is to be minimised. µ is the Lagrange multiplier. To find the minimum of this functional, we must first calculate its
variation and then set it equal to zero. We find the variation of the functional similarly as when we talked about the
Hartree-Fock equations: we will calculate how the functional changes when the density n(r⃗) changes by a small
amount δn(r⃗):

δΩTF[n] = ΩTF[n+ δn]− ΩTF[n] (416)
In order not to have to write too long formulae, we will write the whole functional as a sum of several terms:

ΩTF = TTF + Eext + EHartree − µ

[∫
n(r⃗) d3r −N

]
(417)

First, calculate
δTTF[n] = TTF[n+ δn]− TTF[n]

TTF[n+ δn] = CF

∫
(n+ δn)5/3 d3r = CF

∫
n5/3

(
1 +

δn

n

)5/3

d3r

The density variations in the search for the functional minimum are very small, such that |δn|/n≪ 1. Then we can
apply Taylor’s expansion

(1 + x)p ≈ 1 + px , |x| ≪ 1 (418)
to a part of the subintegral expression and obtain

TTF[n+ δn] = CF

∫ (
n5/3 +

5

3
n2/3δn

)
d3r

Therefore

δTTF[n] =
5

3
CF

∫
n2/3 δn d3r (419)

Let us now calculate

EHartree[n+ δn] =
1

2

∫ [
n(r⃗) + δn(r⃗)

][
n(r⃗ ′) + δn(r⃗ ′)

]
|r⃗ − r⃗ ′|

d3r d3r′ =

= EHartree[n] +
1

2

∫
n(r⃗)δn(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′ + 1

2

∫
δn(r⃗)n(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′+

+
1

2

∫
δn(r⃗)δn(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′
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The last term – the one with the product of variations – is infinitely smaller than the terms linear in the variation
δn. The two linear terms of the last formula are identical because the notations of the integration variables do not
matter. So we get

δEHartree[n] =

∫
n(r⃗)δn(r⃗ ′)

|r⃗ − r⃗ ′|
d3r d3r′ (420)

Variations of the remaining two contributions to the functionalΩTF can be calculated analogously (and very simply).
Bu summing up we arrive at expression

δΩTF[n] =
5

3
CF

∫
n2/3 δn d3r −

∫
uext(r⃗)δn(r⃗) d3r +

∫
n(r⃗ ′)δn(r⃗)

|r⃗ − r⃗ ′|
d3r d3r′ − µ

∫
δn(r⃗) d3r (421)

and if we put it into one integral and take out of the brackets what can be taken, we obtain the following expression:

δΩTF[n] =

∫
d3r
[
5

3
CF n

2/3(r⃗)− uext(r⃗) +

∫
d3r′ n(r⃗ ′)

|r⃗ − r⃗ ′|
− µ

]
δn(r⃗)+

+ terms proportional to higher powers in δn (422)

It follows from the condition of the minimum of the functional that we must require

δΩTF = 0 (423)

for any small variations of the electron density. For δΩTF to be zero under these conditions, the following must
apply:

5

3
CF n

2/3(r⃗)− uext(r⃗) +

∫
n(r⃗ ′)

|r⃗ − r⃗ ′|
d3r′ = µ (424)

By solving this integral equation for an unknown density (such that it is non-negative and integrates toN ), we can
finally evaluate also the ground state energy of the TF model. The Lagrange multiplier µ has a meaning of the Fermi
energy according to the TF model (which we will not justify).

Thus, the TF theory (1927) provides an incredibly simple description of the complex many-particle problem.
Instead of a wave function which has 3N spatial variables, the density with only 3 variables is sufficient. The tax
for this simplicity is the inaccuracy of the TF model, even after improvements, which have been many in history
(eg the inclusion of exchange energy). For example, this method is unable even qualitatively correctly describe
molecular bonds (nuclei of a molecule would not be kept together according to the TF model). However, the TF
theory is an excellent motivation for a rigorous approach to the description of the ground state using the density.
This rigorous approach – density functional theory – began to develop in 1964, whenHohenberg and Kohn published
their innovative work.

12 Density Functional Theory

We will be using abbreviation DFT according to the English term Density-Functional Theory. The fundamentals
of this theory were laid by Pierre Hohenberg a Walter Kohn in their work [13]. We will introduce the two basic
theorems of DFT according to this original work.

12.1 Electron Density

Since DFT theorems work with the concept of electron density, it will be useful to first clarify how this density
can be determined from a wave function. Let a wave function of an N -electron system is Ψ(r⃗1, σ1, . . . , r⃗N , σN). At
this stage of our the exposition, it may not even be a wave function of the ground state, it may even depend on time,
although we do not explicitly indicate it. However, we do require the standard normalisation:∑

σ1

· · ·
∑
σN

∫
d3r1· · ·

∫
d3rN |Ψ(r⃗1, σ1, . . . , r⃗N , σN)|2 = 1 (425)
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We interpret the expression |Ψ(r⃗1, σ1, . . . , r⃗N , σN)|2 d3r1 . . . d3rN as the probability to find:
electron 1 in a state with spin σ1 within the volume d3r1 in the neighbourhood of point r⃗1
and at the same time (in the sense of the logic)
electron 2 in a state with spin σ2 within the volume d3r2 in the neighbourhood of point r⃗2
and at the same time
………
electron N a state with spin σN within the volume d3rN .
In these considerations, we must not forget that the electrons are in fact indistinguishable and the wave function
is antisymmetric. However, the wave function is conventionally being normalised according to (425). According to
this normalisation, the unity is obtained by summing up the probabilities of the occurrence of the N electrons here
and there in the way as if they were distinguishable. Other normalisation would bring substantial complications.

Calculation of n(r⃗) Using the Probability Density If we omit summation and integration over one of the co-
ordinates, e.g. over the first one, we obtain the probability density of finding any electron in the spin state σ at the
point r⃗:

Pσ(r⃗) =
∑
σ2

· · ·
∑
σN

∫
d3r2· · ·

∫
d3rN |Ψ(r⃗, σ, r⃗2, σ2, . . . , r⃗N , σN)|2 (426)

We highlighted any, because due to the indistinguishability of electrons and the antisymmetry of the wave function
[Ψ(j, i; t) = −Ψ(i, j; t), see the end of section 8.5], it does not matter which orbital-spin coordinate (r⃗i, σi) we
would omit from the summation and integration; from a given wave function Ψ, we would always get the same
function Pσ(r⃗). Of course, thanks to normalisation (425) it holds∑

σ

∫
d3r Pσ(r⃗) = 1 (427)

that is, if we accomplish the search over the entire orbital-spin space, we find the searched electron with the 100%
probability (although we can not say if it is the first one or the second etc). If we are not interested in what spin an
electron has, then we get the probability density of finding some electron (with any spin) at point r⃗ by summing up
over the both spins:

P(r⃗) =
∑
σ

Pσ(r⃗) (428)

and it is clear that ∫
P(r⃗) d3r = 1 (429)

It is now clear that the electron density n(r⃗) is proportional to the function P(r⃗):
n(r⃗) = N P(r⃗) (430)

The proportionality constant must be the total number of electrons N , because the integral of the electron density
over the whole space must give the total number of the electrons:∫

n(r⃗) d3r = N (431)

Recall that we have already explicitly encountered the electron density n of the N -electron system, or (which is an
equivalent quantity), the charge density ρ generated by such a system: For the first time, it was in our study of the
HF method [eq. (300)]. For the second time, we encountered density when studying the homogeneous electron gas,
for which from the very definition of the problem, naturally, the density did not depend on the position [eq. (405)].
Then we worked with it, already spatially dependent, in the theory of Thomas and Fermi; see for instance eq. (413).
Nowwe have finally related the electron density to the wave function of theN -electron system. Based on formulae (430),
(428) and (426) we now write this relation explicitly:

n(r⃗) = N
∑
σ

∑
σ2

· · ·
∑
σN

∫
d3r2· · ·

∫
d3rN |Ψ(r⃗, σ, r⃗2, σ2, . . . , r⃗N , σN)|2 (432)

In the following sections, we will need to be able to express the potential energy of an electron in a given external
field using the electron density generated by that electron.
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Calculation of n(r⃗) Using the Operator of the Density of Electrons.
This part -- it is written in a smaller font and narrower text -- does not need to be
known, but it is recommended to at least look at it for interest.

Hustota elektrónov je fyzikálna veličina a preto sa dá definovať aj jej operátor; samotnú hustotu potom bude možné počítať
ako kvantovomechanickú strednú hodnotu tohoto operátora v danom ľubovoľnom stave Ψ:

n(r⃗) = ⟨Ψ|n̂(r⃗)|Ψ⟩ (433)

Aké je vyjadrenie operátora hustoty elektrónov? Treba ho skonštruovať v súlade s princípom korešpondencie, teda na zák-
lade 2. postulátu kvantovej mechaniky preberanom v odseku 1.2.6. Vychádzať preto treba z formuly pre hustotu klasických
elektrónov; tá sa potom dá prehlásiť za operátor. Klasické elektróny sú bodové častice, a preto v miestach, kde je niektorý
z elektrónov, je hustota nekonečná, a v ostatných miestach priestoru je nulová. Teda

n̂(r⃗) =

N∑
i=1

δ(r⃗ − ˆ⃗ri) (434)

kde δ(r⃗) je 3-rozmerná Diracova delta funkcia spĺňajúca podmienky [2]

δ(r⃗) = δ(−r⃗) ,
∫
δ(r⃗) d3r = 1 (435)

a aj všeobecnejšiu podmienku ∫
f(r⃗) δ(r⃗ − r⃗0) d3r = f(r⃗0) (436)

pre ľubovoľnú „slušne“ sa správajúcu funkciu f(r⃗) a pre ľubovoľný bod r⃗0 v priestore. Všimnime si, že pre vyššie zavedenú
klasickú hustotu (a zároveň QM operátor) n̂(r⃗) platí ∫

n̂(r⃗) d3r = N (437)

čo je v súlade s tým, čo od správne zavedenej hustoty očakávame. Teraz môžeme vyjadriť samotnú QM strednú hodnotu
hustoty podľa (433):

n(r⃗) = ⟨Ψ|
N∑
i=1

δ(r⃗ − ˆ⃗ri) |Ψ⟩ =

=

N∑
i=1

∑
σ1

· · ·
∑
σN

∫
d3r1 . . . d3rN Ψ∗(r⃗1, σ1, . . . , r⃗N , σN ) δ(r⃗ − r⃗i) Ψ(r⃗1, σ1, . . . , r⃗N , σN ) =

=

N∑
i=1

∑
σ1

· · ·
∑
σN

∫  N∏
j=1
j ̸=i

d3rj

Ψ∗(r⃗1, σ1, . . . , r⃗i → r⃗, σi, . . . , r⃗N , σN ) Ψ(r⃗1, σ1, . . . , r⃗i → r⃗, σi, . . . , r⃗N , σN )

Vďaka antisymetrii vlnovej funkcie je jedno, aké je i – pre každé i dostaneme taký istý príspevok. Preto (ak použijeme i = 1)

n(r⃗) = N
∑
σ1

· · ·
∑
σN

∫  N∏
j=2

d3rj

 |Ψ(r⃗, σ1, . . . , r⃗N , σN )|2 (438)

čo je vyjadrenie identické s výsledkom (432), ktorý sme dostali výpočtom pomocou hustoty pravdepodobnosti. Výpočet
pomocou operátora n̂(r⃗) možno považovať za elegantnejší.

12.2 Definition of the Problem under Study

Consider a system of N electrons. Suppose their motion is influenced by the external electrostatic potential
v̂ext(r⃗) and by the mutual Coulomb interactions of the electrons. The external potential includes both the Coulomb
field of the atomic nuclei and possible other electrostatic field, exactly as we assumed in the theory of Hartree and
Fock. We do not consider spin interactions or other relativistic effects, so there are no spin-dependent terms in the
Hamiltonian. Therefore, the total Hamiltonian will be

Ĥ = T̂ + V̂ext + Ŵ (439)
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where

T̂ =
N∑
i=1

(
− h̄2

2m

)
∇⃗2

i (440)

is the kinetic-energy operator of the whole system,

V̂ext =
N∑
i=1

v̂ext(r⃗i) (441)

is the potential-energy operator of the whole system and [see possibly also (411) and (412)]

v̂ext(r⃗) = −
∑
I

1

4πε0

ZIe
2

|r⃗ − R⃗I |
+ v̂other(r⃗) (442)

Thus, V̂ext is the sum of the potential energies of the individual electrons. Every electron moves in the same external
potential56 ûext(r⃗) = v̂ext(r⃗)/(−e). This must be from the very definition of the problem, because all theN electrons
belong to the same system (e.g. a molecule or a crystal) and every electron thus feels a field of the same nuclei plus
a possible additional (“other”) field. v̂ext and ûext are the same functions as vext and uext in the theory of Thomas and
Fermi, but here we also add hats to them to emphasize that DFT is, unlike the TF model, a fully quantum theory.
We were writing hat also in the HF theory [eq. (259), (278)]. Finally

Ŵ =
1

2

N∑
i,j=1

′ e
2

4πε0

1

|r⃗i − r⃗j|
(443)

is the operator of the electron-electron interaction energy.
The main task in the DFT is to determine the ground-state electron density and energy. The fundamental spatial

variable is the density n(r⃗). Wave functions (or rather a set of single-particle orbitals) have, as we shall see, only an
auxiliary role in DFT.

12.3 Potential Energy of Electrons in the External Field

The total energy of the system in any normalized state Ψ can be found as the quantum-mechanical expectation
value of the energy operator:

E = ⟨Ψ|Ĥ|Ψ⟩ = ⟨Ψ|T̂ |Ψ⟩+ ⟨Ψ|V̂ext|Ψ⟩+ ⟨Ψ|Ŵ |Ψ⟩ (444)

Let us now consider the contribution from the external field to show that it can be easily expressed in terms of
density n(r⃗).

Eext = ⟨Ψ|V̂ext|Ψ⟩ = (445)

=
∑
σ1

· · ·
∑
σN

∫
d3r1 . . . d3rN Ψ∗(r⃗1, σ1, . . . , r⃗N , σN)

[
N∑
i=1

v̂ext(r⃗i)

]
Ψ(r⃗1, σ1, . . . , r⃗N , σN) =

=
N∑
i=1

∑
σ1

· · ·
∑
σN

∫
d3r1 . . . d3rN |Ψ(r⃗1, σ1, . . . , r⃗N , σN)|2 v̂ext(r⃗i)

Due to the antisymmetry of the wave function, each of the N terms of this sum is the same. (No matter what i we
take, the contribution for each i is the same.) Therefore, taking into account (432) we get

Eext =

∫
n(r⃗)v̂ext(r⃗)d3r =

∫
(−e)n(r⃗)︸ ︷︷ ︸
ρ(r⃗)

ûext(r⃗)d3r (446)

56In a strict sense, uext(r⃗) is called to be a potential (usually coming from the nuclei, i.e. positive), while vext(r⃗) = −euext(r⃗) is the
potential energy of a point particle with charge (−e) in the field uext(r⃗). For the sake of brevity, we will also sometimes call v̂ext(r⃗) = vext(r⃗)
potential. We use this quantity here in the sense of an operator; in QM we cannot consider an electron as a classical point particle. The
actual potential energy of the electrons in the external field must be calculated from the wave function according to (445) or from the
density according to (446).
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Thus, even in quantum mechanics, the quantum mechanical expectation value of the potential energy of electrons in
a given external field is calculated by the formula known from classical physics: as if the electrons were forming a
continuous charge distribution with the charge density ρ(r⃗) and this charge distribution in the potential ûext(r⃗) has
the electrostatic energy Eext. This is exactly the way how we (in the atomic units) calculated this energy in the
model of Thomas and Fermi, see the second term in (413).

12.4 Density as Basic Variable

While in sections 12.1 and 12.3Ψ could have been any normalisedwave function of theN - electrons system (even
a time-dependent one), here by Ψ we will understand the ground-state wave function. We will assume the ground
state of the system under study to be non-degenerate. The ground-state wave function is then unambiguously
determined the the number N and by the external potential v̂ext(r⃗). To understand this, realise that if we know the
number of electrons of a system and the course of the external potential, then we can unambiguously determine its
Hamiltonian (439); whatever the system is, the contributions T̂ and Ŵ always have the forms (440) and (443) (and
for different systems, these formulae can only differ in different numbersN ). And if we know the Hamiltonian, then
at least in principle we can solve the stationary SchE and in this way to determine the wave function and energy
of the ground state. Note also that if we have two different systems (for example two different molecules), but with
the same numbers of electrons, then their Hamiltonians differ only in the external potentials. So once again – the
ground state wave function Ψ is uniquely determined by the number ofN and by the external potential v̂ext(r⃗). We
do not write the hats on vext further for brevity.

The 1st theorem of Hohenberg and Kohn: reports that a less obvious statement – in reverse direction – also
applies [13]:

vext is a unique functional of the ground-state density n(r⃗), apart from a trivial additive constant.

Alebo, trochu inými slovami [11], the external potential vext(r⃗) is determined, within a trivial additive constant,
by the electron density n(r⃗).

A comment to elucidate the constant: We know that if we add any constant to potential energy or potential, nothing
changes in physics of the system: the force on a particle is F⃗ = −∇⃗vext and the additive constant has no influence
on the result of the derivative. Also in QM, only energy differences are important.
We also notice that if we know the electron density, the number of electrons in the system is clearly determined by
it:

N =

∫
n(r⃗) d3r (447)

A consequence: Since, according to the 1st HK theorem, the density of the ground state uniquely determines the po-
tential, and thus also the Hamiltonian, the wave function of the ground state and of all other states are then uniquely
determined (apart from trivial multiplication constants). Therefore, all properties of the system all fully determined if
just the ground-state density is given [12].
Proof of the 1st HK theorem: it proceeds by reductio ad absurdum57 and is strikingly simple:
Máme danú hustotu n(r⃗) istého základného stavu. Predpokladajme, že by 1. HK teoréma neplatila, teda že by ex-
istovali (aspoň) dva netriviálne odlišné vonkajšie potenciály, vext(r⃗) a v′ext(r⃗), také, že by oba dávali (vyriešením
SchR) tú istú hustotu základného stavu n(r⃗). Tie dva rôzne potenciály by nutne viedli ku dvom rôznym hamilton-
iánom Ĥ a Ĥ ′ a tým aj ku rôznym vlnovým funkciám Ψ a Ψ′ základných stavov. Predpokladajme normovanosť
týchto vlnových funkcií. Energie základných stavov Ψ a Ψ′ si označme E a E ′. Potom platí

E = ⟨Ψ|Ĥ|Ψ⟩ , E ′ = ⟨Ψ′|Ĥ ′|Ψ′⟩
57clasically [reˈduktió ad abˈsurdum], in later times [reˈdukcio ad abˈsurdum] (from Latin)
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Podľa všeobecne platného variačného princípu QM (167) platí58

E ′ = ⟨Ψ′|Ĥ ′|Ψ′⟩ < ⟨Ψ|Ĥ ′|Ψ⟩

Použili sme ostrú nerovnosť, lebo podľa predpokladu uvažujeme sústavu s nedegenerovaným základným stavom.
Ak teda Ψ′ dáva minimum, tak Ψ musí dať vyššiu energiu. Ďalej to upravujme:

E ′ < ⟨Ψ|Ĥ ′|Ψ⟩ = ⟨Ψ|Ĥ|Ψ⟩+ ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ = E + ⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩

Druhý člen na pravej strane sa dá upravovať s prihliadnutím ku (439) (445) a (446) takto:

⟨Ψ|Ĥ ′ − Ĥ|Ψ⟩ = ⟨Ψ|V̂ ′
ext − V̂ext|Ψ⟩ =

∫
n(r⃗) [v′ext(r⃗)− vext(r⃗)] d3r

Hustota n(r⃗) je totiž podľa predpokladu len jedna pre oba potenciály. Takže dostávame

E ′ < E +

∫
n(r⃗) [v′ext(r⃗)− vext(r⃗)] d3r (448)

Obdobný výpočet môžeme spraviť tak, že navzájom zameníme čiarkované a nečiarkované veličiny:

E < ⟨Ψ′|Ĥ|Ψ′⟩ = ⟨Ψ′|Ĥ ′|Ψ′⟩+ ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ = E ′ + ⟨Ψ′|Ĥ − Ĥ ′|Ψ′⟩ ⇒

E < E ′ +

∫
n(r⃗) [vext(r⃗)− v′ext(r⃗)] d3r (449)

Sčítaním nerovností (448) a (449) dostávame

E ′ + E < E + E ′

which is an obvious non-sense. Predpoklad, že by (v prípade sústav s nedegenerovaným základným stavom) pre
danú hustotu n(r⃗) existoval viac ako jeden vonkajší potenciál vext, teda nie je správny, lebo vedie ku nezmyselnému
dôsledku.59

12.5 The Variational Principle

The 2nd theorem of Hohenberg and Kohn:

There exists a universal [i.e. independent of vext(r⃗)] functional of the density, FHK[n] such that the
expression

Ev[n] ≡
∫
vext(r⃗)n(r⃗) d3r + FHK[n] (450)

has as its minimum value the exact ground-state energy of the N -electron system for any given
potential vext(r⃗). The density that minimises the functional Ev[n] is the exact ground-state dens-
ity [13].

Mathematically expressed, the variational principle of the 2nd Hohenberg and Kohn theorems is that

E0 ≤ Ev[n] (451)

for any trial density that satisfies the conditions

n(r⃗) ≥ 0 ,

∫
n(r⃗) d3r = N (452)

58Ten princíp samozrejme platí aj pre mnohočasticové sústavy. My sme si ho zapisovali len pomocou jednočasticových vlnových funkcií,
lebo vtedy sme poznali len také, ale všimnime si, že na jeho platnosti a dôkaze sa nič nezmení, keď namiesto f(r⃗) a d3r budeme uvažovať
mnohočasticové funkcie, dokonca aj so spinovými premennými.

59Nešlo teda o typický dôkaz sporom, lebo v takom by sa prišlo do sporu s nejakým vopred vysloveným predpokladom. My sme len
prišli ku nezmyslu. Ale aj dôkazy sporom sa radia medzi logicko-matematické postupy s názvom reductio ad absurdum.
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Proof of the 2nd HK theorem:
We already know how to express the energy of a given system in any normalised N -electron state Ψ – we can do
it using formula (444). For the purpose of our proof, we would now need to rewrite this formula so that the energy
expressed by it depends on the density of the electrons, and not on the wave function. Is it possible? Yes; realise
that the 1st HK theorem has the consequence, mentioned below it, that the ground-state wave function itself is fully
determined by the ground state (GS) density, and is therefore also a functional of the density. And since everything
can be calculated from the wave function, e.g. the kinetic energy (in the sense of the QM expectation value), the
electron-electron interaction energy, also the total energy, we can also consider these as density functionals. There-
fore, we can really write for the energy (444) corresponding to stateΨ and also for the individual components of the
energy that they can be expressed as density functionals (and in this expression there will no longer be a dependence
on wave functions):

Ev[n] = T [n] +W [n] +

∫
n(r⃗)vext(r⃗)d3r (453)

where
T [n] = ⟨Ψ|T̂ |Ψ⟩ , W [n] = ⟨Ψ|Ŵ |Ψ⟩ (454)

We now define the functional
FHK[n] ≡ T [n] +W [n] (455)

The total energy can then be expressed by the formula of the form (450). By this we have completed the part of the
proof of the 2nd HK theorem, i.e. we have proved that there exists some universal functional FHK[n], using that we
can also express the energy of the GS.

Above, we added the index v to the total energy, highlighting that it depends on the external potential vext(r),
which, as we already know, is also a functional of the density, so it would not be necessary to talk about the depend-
ence on vext(r). However, for formal reasons, if we need and want to, we can also understand Ev[n] as a value that
depends on vext(r) and on n(r⃗) as on two independent functions. For a given chosen potential vext(r⃗), we can then
test different (trial) densities n(r⃗) and find out which of them gives the lowest value of the functional Ev[n]. If we
took a density other than the GS density, then this density would correspond to a wave function other than the GS
function. We remind that with these considered variations of the density, we keep the external potential vext(r) in
formula (453) fixed in its originally given form. Based on the variational principle of QM taken over in section 6.1,
it must then be true that if the density and thus the wave function deviates from the wave function of the ground
state, the value of Ev[n]must necessarily increase. By this we have completed the proof of the 2nd HK theorem. We
also note that although the variational principle taken over in section 6.1 has been written for the case of a single
particle, its generalization to N particles would be trivial.

An alternative formulation of the potential-and-density relation also exists. This formulation also eliminates the
problem of possible degenerate ground state, the solution of which we have omitted in our exposition. The authors
of this formulation are Levy and Lieb [11, 12]. In their formulation, they provide an alternative proof of the 2nd
theorem of Hohenberg and Kohn.

We now see that the heuristic approach of Thomas and Fermi, in which the minimum of the functional (415) is
sought with respect to density, has been given a rigorous basis by the theorems of Hohenberg and Kohn (as well as
by the works of Levy and Lieb). However, the problem of the TF model is in the qualitatively inaccurate expression
of the functionals TTF[n] and W [n]. For example, W [n] in the TF theory includes only the classical part of the
interaction energy; the exchange energy is completely missing, as well as the correlation energy. Even the work of
HK [13] itself, although it proves that there exists some universal functional, it does not find its exact explicit form,
only approximations for certain limiting cases. Even later, this functional could never be found exactly. However,
a suitable method was proposed in 1965 by Kohn and Sham, which we will talk about at least a little in the next
section.

12.6 Kohn-Sham Ansatz

Thedifficult-to-solve system ofN interacting electrons was replaced by Kohn and Sham (KS) in their approach to
the DFT by an auxiliary system of N independent, i.e. non-interacting electrons [14]. This auxiliary system must be
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such as to provide the same electron density of the ground state as the original problem of interacting particles. This is
the KS ansatz (an “educated guess” how to solve a given problem [Wikipedia]). In English-written literature, the term
Kohn-Sham mapping is sometimes used to indicate that Kohn and Sham mapped the system ofN interacting
electrons to a system of N non-interacting ones, but so as the electron density to be the same. Due to
the assumption of the independent electrons, their kinetic energy is easily determined. Of course, independent
electrons would only have the kinetic energy plus the energy Eext of the interaction with a given external potential.
This energy would be completely wrong and we want the correct ground state energy. Therefore, we must add the
missing contributions EHartree[n] and Exc[n] to the following expression for the total energy:

EKS[n] = Ts[n] +

∫
n(r⃗)vext(r⃗)d3r + EHartree[n] + Exc[n] (456)

where Ts is the mentioned kinetic energy of the neinteracting electrons, EHartree is the Hartree energy and Exc is the
exchange-correlation energy (i.e. the exchange one and the correlation one added together). For understanding,
(456) must be compared with (453). It can be seen that the Hartree energy is a (quantitatively significant) part of the
total interaction energy W . But the total W in addition contains the QM contributions: the exchange-correlation
energy, so we had to add these to (456) in the form of the Exc term. It is obvious that the exchange-correlation
energy defined in this way also contains a part of the kinetic energy, because we have included into Ts only such a
kinetic energy that corresponds to the independent electrons.

The system of independent electrons can usually be described by a one-determinant wave function, as it is in the
Hartree-Fock theory. So in DFT we introduce auxiliary (spin) orbitals, which the Slater determinant is composed of
(but it doesn’t really need to be built and evaluated). These orbitals, when calculated correctly, must generate the
correct ground state density. The kinetic energy Ts is then determined from these auxiliary orbitals as in the HF
method, i.e. it is (in principle) the exact kinetic energy of the non-interacting electrons. Thus, not as in the Thomas-
Fermi model, in which the kinetic energy is determined very inaccurately directly from the density according to
(410). Realise that the TF kinetic energy is really only correct for homogeneous gas of non-interacting electrons (but
in the TF model it is also used for inhomogeneous one, which then has its undesirable consequences.) In DFT, we
have transformed the problem to the problem of non-interacting particles, but they generally form an inhomogeneous
gas and therefore it is correct to calculate their kinetic energy from the orbitals. Thus, in practical use of DFT, we
do not completely get rid of wave functions; the one-particle ones are needed.

A special feature of DFT is the mentioned exchange-correlation energy, for which various approximations are
being proposed. The basic model is called the local-density approximation [14] (LDA):60

ELDA
xc [n] =

∫
n(r⃗) ϵxc(n(r⃗)) d3r (457)

where ϵxc(n) is the exchange-correlation energy of homogeneous electron gas of density n per one electron. The
dependence of ϵxc on n for a homogeneous electron gas can be calculated with sufficient accuracy by specialised
methods. Using formula (457), we can then approximaltely determine the exchange-correlation energyExc[n], which
makes it possible to practically use the density-functional theory. The LDA model appears to be a rough approx-
imation because in atoms, molecules and crystals, density exhibits strong inhomogeneities. It is a similar difficulty
as in the Thomas-Fermi model. Rather surprisingly, however, DFT with the LDA functional is a very good approx-
imation, qualitatively better than the TF model. During the development of DFT, of course, various improvements
were developed for the Exc[n] function, e.g. gradient corrections, under which ϵxc depends not only on the dens-
ity at a given location, but also on its gradient [see, for instance, the contribution of authors J.P. Perdew, S. Kurth
in [15], formula (1.230)]. In this respect, e.g. theGGA (Generalised Gradient Approximation)model, and in particular
its implementation PBE (acronym according to the authors’ names) is successful [15, 12]. However, no functional
proposed so far is accurate (and it can hardly be expected that such a one, being also practically usable, will ever
be found). Nevertheless, DFT in conjunction with the KS mapping (of the interacting to the non-interacting prob-
lem) is the most widely used ab initio method.61 This is because it is a good compromise between accuracy and
computational demands. Walter Kohn is the winner of the 1998 Nobel Prize in Chemistry for his key work on DFT.

60a well-know abbreviation in electronic structure theory
61The term ab initio is, as already mentioned, used primarily for methods of quantum chemistry which employ only basic physical

laws and mathematical-numerical procedures to solve the relevant equations. In a broader sense, ab initio methods include DFT methods,
although quantum chemists do not usually call them that, because the designs of the Exc[n] functionals tend to be constructed in ways
that do not guarantee uniform quality of results for different systems. E.g. for some molecules we get highly accurate results with DFT,
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Finally, we only verbally mention that the KS ansatz, after accomplishing variation (minimum search) similar to
that in the TF method, leads to the Kohn-Sham equations for the above-mentioned auxiliary one-particle orbitals
and the corresponding one-particle eigenenergies [14, 12, 11]. The KS equations by their form resemble the HF
equations a little.

for many others (even solids) also very good, but in some cases DFT (with a specific functional, e.g. LDA) fails. This can often be helped
by designing another functional, but this can be worse for some other structures, or for determining some other parameters of a given
structure.
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A Expansion of a wave function in a complete set of functions

A.1 Functions of one variable. Expectation values of quantities

Assume we have a complete set of functions
{un(x)} (A.1)

We omit writing the range of the values of the index n. It usually is infinite with the indexing starting either from 0
or from 1 or from −∞, possibly from some other values. This does not matter now and a concrete choice depends
on a concrete task to be solved. The essential property is that the functions form a complete set which means that
any function can be written as a linear combination of the functions un(x):

ψ(x) =
∑
n

cnun(x) (A.2)

In addition to the completeness, let us assume also orthogonality of of the basis functions un(x):∫ ∞

−∞
u∗m(x)un(x) dx = 0 akm ̸= n (A.3)

Such functions are definitely linearly independent: no one of them can be expressed as a linear combination of the
remaining functions.62 In addition, there are practical (and in quantum mechanics also physical) reasons to assume∫ ∞

−∞
|un(x)| dx = 1 pre každé n (A.5)

that is the normalisation to unity. The last two properties (orthogonality plus normalisation) are called orthonor-
mality in a single word. We express it ∫ ∞

−∞
u∗m(x)un(x) dx = δmn (A.6)

The above formulae and procedure can also be understood purely as some mathematical formalism. Since we want
them to use for quantum physics, let us suppose that {un(x)} is a set of eigenfunctions fo some hermitian operator
and that ψ(x) is a wave function.63 It has to be normalised to unity:∫ ∞

−∞
|ψ(x)|2 dx = 1 (A.7)

We now subtitute expansion (A.2) into this condition. Using orthonormality (A.6), we arrive at∑
n

|cn|2 = 1 (A.8)

62In order to demonstrate the above mentioned linear independency, let us try, for examples, to express the function uk(x) as s linear
combination of the basis functions un(x):

uk(x) =
∑
n

cnun(x) (A.4)

Multiple the equation from the left by the function u∗m(x) (withm being any of the possible values of the index) and integrate. We obtain∫ ∞

−∞
u∗m(x)uk(x) dx =

∑
n

cn

∫ ∞

−∞
u∗m(x)un(x) dx

i.e., employing the orthonormality (A.6),
δmk =

∑
n

cnδmn = cm, ∀m

which in other sybols reads cn = δnk . Thus, we obtain the only non-vanishing term in the expansion (A.4):

uk(x) =
∑
n

δnkun(x) = uk(x)

63It may depend also on time but we need not stress this possible dependence now.
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This result suggests that the number |cn|2 = Pn should be interpreted as a probability that the particle is in a state
described by the wave function un(x). As the probabilities sum up to 1, it means that one of the possibilities will
definitly happen. Since the particle exists, it has to be in some state. And since our linear combination (A.2) includes
all possibilites, one of them must occur. For example, if we roll the dice, the particular probabilities are 1/6 and they
sum up to 1. The quantities cn are called probability amplitudes. We can find an expression for them as follows: we
multiply expnasion (A.2) from the left side by the function u∗m(x) and integrate (we have been doing manipulations
of this kind). Using the orthonormality, we arrive at

cn =

∫ ∞

−∞
u∗n(x)ψ(x) dx (A.9)

We provide further support for the above interpretation of the numbers |cn|2 as follows: We have said that the
functions un(x) are eigenfunctions of some hermitian operator, which we now denote as F̂ :

F̂ un(x) = Fnun(x) (A.10)

whereFn is (a real) eigenvalues corresponding to the eigenfunction un(x). Assume the particle be in a state described
by a wave function ψ(x); what is then the expectation value of the quantity F in this state? According to the 2nd

postulate of quantum mechanics, this expectation value can be calculated as follows:

F̄ =

∫ ∞

−∞
ψ∗(x) F̂ ψ(x) dx (A.11)

By substituting expansion (A.2), using (A.10) and orthonormality (A.6), we obtain

F̄ =
∑
n

|cn|2 Fn (A.12)

Let us now compare this result with formula (1) in our discussion of the bag with the coins (section 1.2.1). We
see that the numbers |cn|2 have a probabilistic interpretation: |cn|2 is the probability of finding the value Fn in a
measurement of the quantity F . According to (A.10) we can alternatively formulate this finding as follows: |cn|2 is
the probability to find the system in the state un. The complex number cn itself is the probability amplitute of the
result Fn, i.e. of the system being in the state un.

Therefore, if some cn in expansion (A.2) vanishes, the probability of finding the particle in the corresponding
state un is zero. The content of this section complements the argumentation to the 2nd postulate of QM (section 1.2).

Although we have done all the argumentation for a function of the single variable x, a generalisation to three
variables (x, y, z) = r⃗ would be trivial and coul be done just by a simple renaming of x to r⃗ and by using triple
integrals d3r instead of simple ones.

A.2 Generalisation of the Argumentation to Many Particle Wave Function

Ak teraz máme vlnovú funkciu popisujúcu dve častice, je to funkcia dvoch vektorových premenných Ψ(r⃗1, r⃗2).
Chceme ju rozvinúť do nejakého úplného systému funkcií. Tento úplný systém musí tiež byť tvorený funkciami
dvoch premenných:

Ψ(r⃗1, r⃗2) =
∑
n

Cnwn(r⃗1, r⃗2) (A.13)

Typicky používaným spôsobomkonštrukcie úplnej sústavy funkcií dvoch premenných je vyrobiť ich z jednočasticov-
ých bázových funkcií:

wn1,n2(r⃗1, r⃗2) = un1(r⃗1)un2(r⃗2) (A.14)
Že sa to tak dá, sme sa presvedčili na prednáške o Pauliho princípe (časť 8.6); pozri poznámka pod čiarou ku for-
mule (227). Index n v (A.13) teda môže byť nejaký kompozitný index: n ≡ (n1, n2), ale to je len technická záležitosť.
Funkcie wn1,n2 tvoria úplnú ortonormovanú sústavu funkcií dvoch premenných:∫

w∗
m1,m2

(r⃗1, r⃗2) wn1,n2(r⃗1, r⃗2) d3r1 d3r2 = δm1,m2δn1,n2 (ortonormovanosť)
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ako sa dá ľahko presvedčiť.64 Rozvoj (A.13) podrobnejšie napíšeme

Ψ(r⃗1, r⃗2) =
∑
n1

∑
n2

Cn1,n2 un1(r⃗1)un2(r⃗2) (A.15)

Interpretácia je taká, že Cn1,n2 je amplitúda pravdepodobnosti toho, že časticu 1 nájdeme v stave un1 a zároveň
časticu 2 v stave un2 .

Platí teda, že ak je niektoré Cn1,n2 v rozvoji (A.15) nulové, tak to znamená, že je nulová pravdepodobnosť nájsť
časticu 1 v stave un1 a zároveň časticu 2 v stave un2 . Toto sa priamo využíva v dôkaze Pauliho princípu v časti 8.6;
pozri vyjadrenie (231), kde pre fermióny vychádza Cn,n = 0, čiže nulová pravdepodobnosť nájsť dve častice v tom
istom stave.

B Partition of the Eigenenergy of the Hydrogen Atom of a Similar Ion into
the Kinetic and Potential Energies

We are going to split energy (147) into its kinetic and potential parts. Before doing so, we note that the ways how
it can be expressed may seem to be very different each other (although they are equivalent):

En = −m
h̄2

(
e2

4πε0

)2
1

2

Z2

n2
=

1

2

1

4πε0

(Ze)(−e)
aZ

1

n2
= −1

2

h̄2

2m

1

a2Z

1

n2
(B.1)

We have introduced the first of the expressions in our derivation of the eigenenergies. To find the second one, which
can easily be done, we used an expression including the 1st Bohr radius of a hydrogen-like ion:

aZ =
aB
Z

(B.2)

where aB is the standard 1st Bohr radius, i.e. the one for the hydrogen atom:

aB =
h̄24πε0
me2

= 0,5291772083 . 10−10 m (B.3)

The second expression reminds us the coulombic potential energy between a nucleus of the charge Ze and an
electron with the charge −e. But it is just half of such energy. The third expression for the eigenenergy in (B.1)
could, of course, be easily derived and we have chosen its form to remind us the kinetic energy p2/(2m), where the
momentum p = h̄/aZ and there is also the multiplicator −1/2 there.

If we did a calculation according the the Bohrmodel (which can be done easily andwewill not give the derivation
here), we would obtain the kinetic and potential energies as follows:

Ekin
n = −En =

h̄2

2m

1

a2Z

1

n2
, Epot

n = 2En =
1

4πε0

(Ze)(−e)
aZ

1

n2
(B.4)

The particular portions of the energy really have the classical (although not physically accurate) interpretation as
we have written above.

The calculations of the portions of the total energy En can, of course, be done correctly in the full quantum-
mechanical way. A straightforward way is as follows: The quantum-mechanical expectation value of the kinetic
energy of an electron in a hydrogen atom or like ion in the state ψnlm(r⃗) is

T̄ =

∫
ψ∗
nlm(r⃗)

(
− h̄2

2m
∆

)
ψnlm(r⃗) d3r (B.5)

Analogously, the quantum-mechanical expectation value of the potential energy of the electron in this state in the
field of a nucleus of charge Ze is

V̄ =

∫
ψ∗
nlm(r⃗)

(
− 1

4πε0

Ze2

r

)
ψnlm(r⃗) d3r (B.6)

64Presvedčiť sa o ortonormovanosti je ľahké. Presvedčiť sa o úplnosti býva zvyčajne ťažšie, ale nemusíme si prednášku matematicky
a technicky príliš komplikovať.
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where ψnlm(r⃗) is the respective eigenstate (150). Accomplishing relatively lengthy calculations, we would arrive at

T̄ = Ekin
n , V̄ = Epot

n (B.7)

that is the same result as from the Bohr model. It could be elegantely derived using the virial theorem which is a
quite general one, applying to many situations in both classical and quantum physics and it says that V̄ = −2T̄ .
But we have not derived the theorem.

Finally, it is worth recalling that the total energy of the hydrogen atom (or a like ion) has a sharp (define, zero-
uncerytainty) value in the state ψnlm(r⃗). It follows from the fact that it is an eigenenergy of the operator of the
total (kinetic plus potential) energy. Wewould easily calculate in mathematically: we would find the mean quadratic
deviation (the second power of the uncertainty) vanishing. However, neither the kinetic energy alone, nor the
potential energy, has a sharp value in this state. It is because the energy Ekin

n is not an eigenenergy of the
kinetic-energy operator T̂ . Similarly, Epot

n is not an eigenenergy of the potential-energy operator V̂ of the system
under study. As for these particular energies, we can only undestand them as mean values. In this respect, it is
useful to realise that [T̂ , V̂ ] ̸= 0.

C Search for a Local Extremum of a Functions of Many Complex Variables

Let f be a complex function of the complex variable z = x+ iy. Therefore, we also can imagine it as a function of
two real variables x, y. Assume that the partial derivatves of f with respect to the real variables x, y exist. How do
we calculate its partial derivative withg respect to the complex variable z? As follows:

∂f

∂z

∣∣∣∣
z∗

=
∂f

∂x

∂x

∂z

∣∣∣∣
z∗
+
∂f

∂y

∂y

∂z

∣∣∣∣
z∗

(C.1)

since x, y are mutually independent real variables. In the procedure we are talking about, we will also formally con-
sider z and z∗ as mutually independent variables, although this may sound strange. The vertical lines |z∗ emphasize
that in the partial derivatives with respect to z we consider z∗ as a constant. We express the complex variables z,
z∗ using x, y by the equations

z = x+ i y , z∗ = x+ i y (C.2)
and the corresponding inverse relations are

x =
1

2
(z + z∗) , y =

1

2 i (z − z∗) (C.3)

Then we can easily calculate the partial derivatives with respect to z and analogously also with respect to z∗; we
obtain

∂f

∂z

∣∣∣∣
z∗

=
1

2

(
∂f

∂x
− i ∂f

∂y

)
,

∂f

∂z∗

∣∣∣∣
z

=
1

2

(
∂f

∂x
+ i ∂f

∂y

)
(C.4)

They are called Wirtinger derivatives. We can immediately invert the two equations (C.4) as follows:

∂f

∂x
=
∂f

∂z

∣∣∣∣
z∗
+

∂f

∂z∗

∣∣∣∣
z

,
∂f

∂y
= i

(
∂f

∂z

∣∣∣∣
z∗
− ∂f

∂z∗

∣∣∣∣
z

)
(C.5)

Now we should look for some extremal point of the function f in the variables x, y. Therefore, we write down the
necessary conditions for the extremum: ∂f/∂x = 0, ∂f/∂y = 0. Using the above written equations, we fid out
that this pair of conditions is equivalent to the pair of equations ∂f/∂z = 0, ∂f/∂z∗ = 0. That is, the following
equivalence holds: (

∂f

∂x
= 0 ∧ ∂f

∂y
= 0

)
⇐⇒

(
∂f

∂z
= 0 ∧ ∂f

∂z∗
= 0

)
(C.6)

The formal constancy of the complex variable no derivative is taken with respect to is no longer emphasized here
for brevity. The generalisation of this procedure for more complex variables z1, z2, …, zp is straightforward. Finally,
we emphasize the need to strictly distinguish partial derivatives with respect to z from the total derivatives with
respect to z. In the situation we are studying, a total derivation does not even exist, because the function (182) does
not satisfy the Cauchy-Riemann conditions.
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D The Helium Atom and Like Ions by the Variational Method

We solve this problem as an exercise.

D.1 Formulation of the Task and the Proposed Form of Its Solution

The system under study can be H−, He, Li+, Be2+, B3+, C4+, …. The Hamiltonian of each of such two-electron
systems has the form

H = − h̄2

2m
∇2

1 −
h̄2

2m
∇2

2 −
1

4πε0

Ze2

r1
− 1

4πε0

Ze2

r2
+

1

4πε0

e2

|r⃗1 − r⃗2|
(D.1)

Z is the number of protons in the nucleus which can be 1, 2, 3, …. The numbers of electrons in the cloud for the
system under study is always 2. The problem to be solved is

Hψ(r⃗1, r⃗2) = Eψ(r⃗1, r⃗2) (D.2)

and we want to determine its lowest-energy solution, i.e. the ground state. We will use the variational principle of
quantum mechanics:

⟨ψ|H|ψ⟩
⟨ψ|ψ⟩

≥ E0 (D.3)

We choose
ψ(r⃗1, r⃗2) = ϕ(r⃗1)ϕ(r⃗2) (D.4)

to be our trial wave function. In this form, ϕ(r⃗) is the ground state of the hydrogen atom or a like ion and we will
write its form in next section. The two-particle wave function (D.4) has a very simple product formmeaning that the
electrons are considered as if were mutually independent, i.e. non-interacting with each other and moving in the
field of the helium atom (or of a similar ion). We will include their interaction later in an indirect approximate way.
We will do it by chosing the auxiliary single-particle function ψ such that it will depend on a certain parameter; the
value of the parameter will be set as if the function did not “feel” the complete field of the nucleus, but only a field
partially screened (or weakened) by the effect of the other electron. Although the interaction of the electron with
the other one will not be included explicitly, it will at least be included indirectly. Below we specify further steps of
our procedure.

D.2 The Ground State of a Hydrogen-Like Ion

This is an auxiliary section in which we will “derive” how the wave function of a hydrogen-like ion (i.e. of a
single-electron system, countrary to our main task, which is a two-electron problem) looks like. Although we have
derived the wave function, we perhaps may not have it on hand right now and looking into literature we may
perhaps find just the hydrogen-atom wavefunction only (i.e. for the proton number 1) and not the wave functions
for the hydrogen-like ions. For the ions, we get the wave function by simply modifying the hydrogen wave function
as described in the following lines.

We know the the hydrogen atom groud state has the 1s-type wave function, that is

ϕ100(r⃗) =
1

(πa3B)
1/2

e−r/aB (D.5)

where
aB =

h̄24πε0
me2

(D.6)

is the 1st Bohr radius. We aim to find a generalisatin of wave function (D.5) valid for a hydrogen-like ion with a
nucleus of charge βe. It is the dependence of the single-particle wave function of type (D.5) on the charge of the
nucleus that will now be important to us. It is obvious that one of the two es in the product ee in expression (D.6)
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originates from the nucleus, the other from the electron. Therefore, we obtain the wave function of the hydrogen-
like ion from (D.5) by the substitution

e2 −→ βe2

from which the substitution
aB −→ aβ =

aB
β

follows. βe is the nuclear charge of the hydrogen-like ion under consideration. We stress that this β is just an
auxiliary parameter introduced independently of the true nuclear charge value Z of the two-electron ion. In what
follows, for brevity, we will denote the standard 1st Bohr radius simply a:

a ≡ aB

For the wave function of a hydrogen-like ion, we get the form

ϕ(r⃗) =
1

(πa3β)
1/2

e−r/aβ =

(
β3

πa3

)1/2

e−βr/a (D.7)

Thus, it is a wave function of the one-electron ion. It would correspond to the hydrogen atom wave function in the
special case of β = 1. In other special case, β = 2, it would corresponds to the wave function of the He+ ion.

Our goal pursued in the following paragraphs is to find a solution to the problem (D.2). The corresponding wave
function ψ is thus understood as the wave function of a two-electron atom or ion. Wave function (D.7) will serve
as an auxiliary mathematical object to achieve the stated goal.

D.3 The Energy for the Chosen Wave Function ψ

Thus, the trial helium atom (or a like ion) wave function will be [see (D.4)]

ψ(r⃗1, r⃗2) =
β3

πa3
e−β(r1+r2)/a (D.8)

Aswe see, it depends on the parameter β. We are not going to determine the value of this parameter immediately, but
we reveal in advance that we will later consider it a variation parameter. The proposed wave function is normalised
to unity (

∫
ψ∗ψ d3r1d3r2 = 1, which can easily be verified since

∫
ϕ∗ϕ d3r = 1). Therefore, in our application of the

variational principle (D.3), it is not necessary to write the denominator and we write the energy for the proposed
state ψ as follows:

E = E(β) =

∫
ψ∗(r⃗1, r⃗2)H ψ(r⃗1, r⃗2) d3r1 d3r2 (D.9)

We emphasized that the value of this energy depends on the auxiliary parameter β. On the RHS of this equation,
the parameter β is found only in the wave function. The HamiltonianH is independent of the parameter. Substitute
the Hamiltonian (D.1) into the integral (D.9) and we can write the resulting expression in the form of the sum

E = T + V +W (D.10)

where

T =

∫
ψ∗(r⃗1, r⃗2)

(
− h̄2

2m

)
∇2

1 ψ(r⃗1, r⃗2) d3r1 d3r2 +
∫
ψ∗(r⃗1, r⃗2)

(
− h̄2

2m

)
∇2

2 ψ(r⃗1, r⃗2) d3r1 d3r2 (D.11)

V =

∫
ψ∗(r⃗1, r⃗2)

(
− Ze2

4πε0 r1

)
ψ(r⃗1, r⃗2) d3r1 d3r2 +

∫
ψ∗(r⃗1, r⃗2)

(
− Ze2

4πε0 r2

)
ψ(r⃗1, r⃗2) d3r1 d3r2 (D.12)

W =

∫
ψ∗(r⃗1, r⃗2)

e2

4πε0 |r⃗1 − r⃗2|
ψ(r⃗1, r⃗2) d3r1 d3r2 (D.13)

97



D.3.1 Calculation of the Kinetic Energy (T )

T =− h̄2

2m

∫
ϕ∗(r⃗1)ϕ

∗(r⃗2)∇2
1 ϕ(r⃗1)ϕ(r⃗2) d3r1 d3r2 −

h̄2

2m

∫
ϕ∗(r⃗1)ϕ

∗(r⃗2)∇2
2 ϕ(r⃗1)ϕ(r⃗2) d3r1 d3r2 =

=− h̄2

2m

∫
d3r1 ϕ∗(r⃗1)∇2

1 ϕ(r⃗1)

∫
d3r2 ϕ∗(r⃗2)ϕ(r⃗2)−

h̄2

2m

∫
d3r2 ϕ∗(r⃗2)∇2

2 ϕ(r⃗2)

∫
d3r1 ϕ∗(r⃗1)ϕ(r⃗1)

Since the orbitals ϕ(r⃗) of the hydrogen-like ion are normalized to 1, i.e.∫
ϕ∗(r⃗)ϕ(r⃗) d3r = 1

the corresponding integrals do not need to be written further. The choice of particular symbols for integration
variables does not matter, and therefore each of the two addends in the expression for T will be the same. So we get

T =

(
− h̄2

2m

)
2

∫
ϕ∗(r⃗)∇2 ϕ(r⃗) d3r (D.14)

We now substitute for ϕ according to expression (D.7) and obtain

T = − h̄2

2m
2
β3

πa3

∫
e−βr/a∇2 e−βr/a d3r︸ ︷︷ ︸

I1

≡ − h̄2

2m
2
β3

πa3
I1 (D.15)

We denoted the integral in this expression by I1. Calculate it in spherical coordionates. Recall that the Laplace
operator in these coordinates acquires the form

∇⃗2 =
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ (D.16)

where
∇2

ϑ,φ =
1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+

1

sin2 ϑ

∂2

∂φ2
(D.17)

So, calculate

I1 ≡
∫
e−βr/a∇2 e−βr/a d3r =

∫ ∞

0

dr r2
∫

dΩ e−βr/a∇2 e−βr/a =

=

∫ ∞

0

dr r2
∫

dΩ e−βr/a

[
1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2
∇2

ϑ,φ

]
e−βr/a

The following holds:
∇2

ϑ,φ e
−βr/a = 0

The integration over the spatial angle Ω will be simple because nothing depends on the angles in the function to be
integrated. We have ∫

dΩ ≡
∫ π

0

dϑ sinϑ
∫ 2π

0

dφ = 4π

and so, we can write

I1 = 4π

∫ ∞

0

dr r2e−βr/a 1

r2
∂

∂r

(
r2
∂e−βr/a

∂r

)
= 4π

∫ ∞

0

dr e−βr/a ∂

∂r

(
r2
∂e−βr/a

∂r

)
We will do this integral easily using the per partes (by parts) method. The results is

I1 = −πa
β

(D.18)
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Therefore, the quantum-mechanical expectation value of the kinetic energy of the two electrons under study in the
state ψ will be

T = 2
h̄2

2m

(
β

a

)2

= β2 (in a. u.) (D.19)

We explicitly highlighted the factor of 2 to remind ourselves that the kinetic energy is a sum of the kinetic energies
of the two electrons in the atom or ion under study. We see that Hartree atomic units [in which m = e = h̄ = 1,
ε0 = 1/(4π)] make it extremely easy to write some formulae. If in a specific problem the use of atomic units would
significantly facilitate us, e.g. a derivation procedure, the atomic units ought to be used. We will soon get to such
an opportunity.

D.3.2 Calculation of the Electrons-Nucleus Potential Energy (V )

V = −2
e2

4πε0
Z
β

a
= −2Zβ (in a. u.) (D.20)

D.3.3 Calculation of the Electron-Electron Potential Energy (W )

The most interesting contribution to the calculated energy E is given by expression (D.13). It expresses the energy
of the electron-electron interaction. We substitute formula (D.8) for ψ and rewrite the value ofW as follows:

W =
e2

4πε0

1

π2

(
β

a

)6 ∫
exp

[
−2β(r1 + r2)

a

]
1

r12
d3r1 d3r2 ≡ e2

4πε0

1

π2

(
β

a

)6

I3 (D.21)

Thus, in this expression we have denoted the integral alone by

I3 =

∫
exp

[
−2β(r1 + r2)

a

]
1

r12
d3r1 d3r2 (D.22)

and we calculate it using spherical coordinates as follows:

I3 =

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)∫ dΩ2

r12
(D.23)

Integration over the spatial angleΩ2 can be elegantlymanaged using an analogywith electrostatics (the trickof Prof.
Peter Lichard, in which a uniformly charged spherical surface with radius r2 is considered and the electrostatic
potential at point r1, which can be at any point in space, is calculated from it). We obtain

∫ dΩ2

r12
=


4π

r1
pre r1 > r2

4π

r2
pre r1 ≤ r2

(D.24)

If we introduce the so-called Heaviside step function

Θ(x) =


1 for x > 0

1/2 for x = 0

0 for x < 0

(D.25)

then the result of the integration over the spatial angle Ω2 can also be written as follows:∫ dΩ2

r12
=

4π

r1
Θ(r1 − r2) +

4π

r2
Θ(r2 − r1) (D.26)
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We substitute this expression into formula (D.23) and consequently the integral break into the sum

I3 =

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1
Θ(r1 − r2)

+

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r2
Θ(r2 − r1)

(D.27)

It turns out that both lines of this expression are the same. To see it, it is sufficient to interchange the ordering of
the integrals in the second line. (This is possible because so far the integration bounds are the constant values or
the infinities, not variables.)

I3 =

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫
dΩ1

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1
Θ(r1 − r2)

+

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)∫
dΩ1

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)
4π

r2
Θ(r2 − r1) =

= 4π

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫ r1

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1

+ 4π

∫ ∞

0

dr2 r22 exp
(
−2β

a
r2

)∫ r2

0

dr1 r21 exp
(
−2β

a
r1

)
4π

r2
(D.28)

(In both lines, the integration over Ω1 yields the value of 4π.) When we look at these two added expressions, we
see that they differ only in that the indices 1 and 2 are interchanged. However, the notation used for integration
variables cannot matter. Therefore, both those lines are the same and we can write

I3 = 2 . 4π

∫ ∞

0

dr1 r21 exp
(
−2β

a
r1

)∫ r1

0

dr2 r22 exp
(
−2β

a
r2

)
4π

r1
=

= 2(4π)2
∫ ∞

0

dr1 r1 exp
(
−2β

a
r1

)∫ r1

0

dr2 r22 exp
(
−2β

a
r2

)
(D.29)

The integrals that appear there can already be calculated by basic methods. First, the integral over r2 must be
calculated, because it has the value r1 as its upper bound. The overall result is

I3 = 2(4π)2
5

8

(
a

2β

)5

(D.30)

According to (D.21), the integrálW , which has the physical dimension of energy, is then equal to

W =
e2

4πε0

5

8

β

a
=

5

8
β (in a. u.) (D.31)

D.4 The Energy for the Chosen Wave Function ψ (continuation)

The total energy E, as written down by formulae (D.9)) and (D.10), can now be expressed by adding contributions
(D.19), (D.20) and (D.31) as follows:

E = 2
h̄2

2m

(
β

a

)2

− 2
e2

4πε0
Z
β

a
+

e2

4πε0

5

8

β

a
(D.32)

To get rid of a number of now irrelevant constants, we express it in Hartree atomic units [m = e = h̄ = 1,
ε0 = 1/(4π) ]. In these, the Bohr radius a gets equal to 1 [see (D.6)]. We obtain a much simpler expression

E = β2 − 2Zβ +
5

8
β = E(β) (D.33)
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The unit of energy in Hartree atomic units is 1 Hartree, which is

1Ha =
e2

4πε0

1

a
≡ e′2

a
= 27.2113834 eV = 4.35974380 . 10−18 J (D.34)

as can also be deduced from the energy formulae written above. Thus, an energy in atomic units can also be under-
stood as a (dimensionless) value of the energy expressed relative to the value of 1Ha. As already mentioned, the
unit of distance in the atomic units is

1Bohr = a ≡ aB =
h̄24πε0
me2

= 0.5291772083 . 10−10 m (D.35)

D.5 Minimisation of the Energy by the Variational Method

The energy E expressed by formula (D.33) is an energy of the two electrons described by wave function (D.4) [see
also (D.7) and (D.8)] and moving in the central field of the nucleus with the charge Ze. The wave function (D.4)
itself corresponds in its form to two mutually independent non-interacting electrons, each of them would move in
a central field of the nucleus with charge βe. Hence, the function ψ will certainly not be correct for the problem
under study (helium ot its like ion), especially because it completely ignores the mutual repulsive interaction of the
electrons and, in addition, it includes the parameter β, the value of which we did not even specify. Nevertheless, we
can improve it as much as possible, or rather set it as best we can, i.e. optimise it. The only way to do it is to find
the best possible parameter β. The criterion of optimality of the parameter β will be the energy (D.33), which we
will try to get as low as possible, in accordance with the variational principle of quantum mechanics (Theorem 8).
Mathematically, this means finding the minimum of the function E(β). So, we employ derivatives:

∂E

∂β
= 2β − 2Z +

5

8

and set the condition
∂E

∂β
= 0

Using it, we obtain the result for the optimal value of the parameter β:

βopt = Z − 5

16
(D.36)

Thus, the mininal energy sought will be

Emin = E(βopt) = −
(
Z − 5

16

)2

= −β2
opt (D.37)

This is our approximate result for the energy of the ground state of the helium atom ot its like ion. Let us now look
at the cases of the individual proton numbers Z (table 1).

D.6 The Ionisation Energy of Helium and of the Like Ions

The first ionisation energy of a (neutral) helium atom is the minimum energy needed to pull one electron out of
it. It is assumed that both helium and the resulting He+ ion are in their ground states. An electron removed by
the supply of ionisation energy moves away from the atom and stops (or has negligible kinetic energy). Since it is
far from the nucleus after being torn out, it also has negligible potential energy. The first ionisation energy of the
helium atom can therefore be calculated as follows:

E ion
1 (He) = E(He+)− E(He) (D.38)

He+ is a hydrogen-like ion; thus we know its ground-state energy exactly: We will get it from formula (147) with
n = 1, Z = 2. As for the helium atom itself, we have just determined its energy approximately by the variational
method: formula (D.37) with Z = 2.
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Table 1: The energies of the helium atom and its like ions obtained by the one-parameter variational method.

Z značka Emin (Ha) Emin (eV)

1 H− −0.4727 −12.86

2 He −2.8477 −77.49

3 Li+ −7.2227 −196.53

4 Be2+ −13.5977 −370.01

5 B3+ −21.9727 −597.91

6 C4+ −32.3477 −880.22

Similarly we define the ionisation energies of the helium/like ions H−, Li+, etc. These, however, will not be the
1st ionisation energies of neutral atoms, but of the ions. To však už nebudú 1. ionizačné energie neutrálnych atómov,
ale iónov. For instance, using the formula

E ion(Li+) = E(Li2+)− E(Li+) (D.39)

we calculate this energy for the lithium kation. Table 2 lists and compares these values also with experimental ones
taken from [1]. All the energies in this table are in Hartrees. The negative value in the case of the anion H− is

Table 2: The ionisation energies of helium and its like ions, obtained by the one-parameter variational method. All
the energies in this table are in the atomic units (Ha). The experimental energies have been taken from [1].

Z symbol experiment the variational method

1 H− 0.055 −0.0273

2 He 0.90331(4) 0.8477

3 Li+ 2.7798(5) 2.7227

4 Be2+ ——– 5.5977

5 B3+ ——– 9.4727

6 C4+ 14.407(4) 14.3477

non-physical. We determined it by the equation

E ion(H−) = E(H)− E(H−) (D.40)

The negative value indicates that the variational method that we used is completely incapable to calculate the ion-
isation energy of this anion. This is because the energy of the anion H− is too high by this method (−0.4727 Ha).
For the other ions (as well as helium itself), however, the simple variational method explained here gives surpris-
ingly good results (given how simple it is). If we used a variational method with more parameters, we would get
results closer to the experimental ones and the value of the ionisation energy for H− would be positive. Physically,
a negative ionization energy would mean that the ion H− would be unstable. In fact, this ion exists and is extremely
important for the opacity of the atmosphere of the Sun and similar stars (D. Chalonge, 1946). The H− ion can exist
in a stable way in its ground state only. (Its bound excited state does not exist.) One proton is able to keep at two
electrons only in their ground state.

D.7 The Effect of Screening

For the ground state energy of the helium atom and similar ions, we derived the expression

E = − e′2

a

(
Z − 5

16

)2

(D.41)
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This expression can be broken down into the sum of two identical ones:

E = −1

2

e′2

a

(
Z − 5

16

)2

− 1

2

e′2

a

(
Z − 5

16

)2

(D.42)

Each of these two terms has a form such as the ground state energy of a hydrogen-like ion (i.e., the energy of a
single-electron system); see expression (147), which can indeed be easily adapted to the form

E1 = −1

2

e′2

a
Z2 (D.43)

However, in the above expression (D.42) for the energy of the helium atom or a similar ion, the value of Z − 5/16
acts as if it were a proton number, not the value of Z . Therefore, we can introduce an effective proton number

Zeff = Z − 5

16
(D.44)

For helium, its value is Zeff(He) = 27/16. The electrons thus shield or screen each other from the nucleus, and each
of themmoves like in a spherically symmetric field of one and the same effective nucleus (in the field that is the sum
of the field of the real nucleus and the other electron). Such an interpretation is correct thanks to the approximation
we used, namely that we have written the wave function in a factorised form separating the variables r⃗1 and r⃗2.

E The Hartree Method

TheTask to Be Solved. Máme riešiť problém (261). VHartreehometóde budeme neznámu vlnovú funkciuΨ hľadať
v tvare Hartreeho súčinu. Pri výklade Hartreeho metódy sa obvykle ignoruje spin [1], čo spravíme aj my. Budeme
teda riešiť týmto spôsobom zjednodušenú verziu úlohy (261). Vlnovú funkciu označíme a vyjadríme výrazom

ψ(r⃗1, . . . , r⃗N) = φ1(r⃗1) . . . φN(r⃗N) (E.1)

Je to tiež Hartreeho súčin, tentoraz závislý iba od priestorových súradníc. Hartreeho metóda je istou realizáciou
variačnej metódy; pozri odsek 6.1. V zmysle tejto metódy potom funkciu (E.1) budeme považovať za pokusnú
funkciu, na ktorú aplikujeme variačnú metódu. Ak by sme zabezpečili, že menovateľ zlomku (167) vo variačnej
metóde by bol rovný 1, celkovú energiu sústavy by sme mohli hľadať minimalizáciou výrazu

G =

∫
ψ∗(r⃗1, . . . , r⃗N) Ĥ ψ(r⃗1, . . . , r⃗N) dτ ≥ E0 (E.2)

kde dτ ≡ d3r1 . . . d3rN . G vtedy predstavuje kvantovomechanickú strednú hodnotu energie sústavy nachádzajúcej
sa v stave ψ. Jednotkovosť menovateľa v (167) znamená, že mnohočasticová funkcia ψ je normovaná na 1:∫

ψ∗(r⃗1, . . . , r⃗N)ψ(r⃗1, . . . , r⃗N) dτ = 1 (E.3)

Keďže výraz G závisí od funkcií (máme na mysli tie φi), nazývame ho funkcionál. Normovanie ψ na 1 dosiahneme
tým, že aj pre jednočasticové funkcie budeme požadovať, aby platilo∫

φ∗
i (r⃗)φi(r⃗) d3r = 1 , ∀i (E.4)

Splnenie týchto normovacích podmienok zabezpečíme použitím Lagrangeových multiplikátorov. Preto definujeme
rozšírený funkcionál

G = G −
N∑
i=1

λi

(∫
φ∗
i (r⃗)φi(r⃗) d3r − 1

)
(E.5)

kde λi sú spomínané Lagrangeove multiplikátory. Namiesto jednoduchšieho funkcionálu (E.2) teda budeme min-
imalizovať G. Jednočasticové funkcie φi vystupujúce v (E.1) sú neznáme a našou úlohou je nájsť ich tak, aby bola
hodnota G čo najmenšia. Funkcie φi teda majú úlohu variačných parametrov.
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Fyzikálne parametre problému, ktorý treba riešiť, sú definovanéHamiltoniánom. Ten zoberme podobný ako (258),
ale bez spinovej časti, čo je často veľmi dobré priblíženie. Hamiltonián teda teraz zapíšeme

Ĥ =
N∑
i=1

ĥ(i) +
1

2

N∑
i,j=1

ŵ(i, j) (E.6)

kde

ĥ(i) ≡ ĥ(r⃗i) = − h̄2

2m
∇⃗2

i + v̂ext(r⃗i) (E.7)

a

ŵ(i, j) =


e2

4πε0

1

|r⃗i − r⃗j|
, i ̸= j

0 , i = j

(E.8)

The Functional Representing Energy for Given Wave Function (E.1). Celý funkcionál (E.5) je praktické rozpísať
si a následne zjednodušiť takto:

G = G + L = G(1) + G(2) + L (E.9)

kde

G(1) ≡
∫
ψ∗(r⃗1, . . . , r⃗N)

[
N∑
i=1

ĥ(i)

]
ψ(r⃗1, . . . , r⃗N) dτ =

N∑
i=1

∫
φ∗
i ĥ(i) φi d3ri = (E.10)

=
(
na označení integ. prem. nezáleží

)
=

N∑
i=1

∫
φ∗
i (r⃗) ĥ(r⃗) φi(r⃗) d3r (E.11)

G(2) ≡
∫
ψ∗(r⃗1, . . . , r⃗N)

[
1

2

N∑
i,j=1

ŵ(i, j)

]
ψ(r⃗1, . . . , r⃗N) dτ = (E.12)

=
1

2

N∑
i,j=1

∫
φ∗
i (r⃗i)φ

∗
j(r⃗j) ŵ(i, j)φi(r⃗i)φj(r⃗j) d3ri d3rj (E.13)

L ≡ −
N∑
i=1

λi

[∫
φ∗
i (r⃗)φi(r⃗) d3r − 1

]
(E.14)

Minimisation of the Functional (and of the Energy). Chceme zistiť, pri akých funkciách φi bude funkcionál G
minimálny. Ide o niečo analogické ku hľadaniuminima funkcie, kedy sa funkcia derivuje. Tu všakmáme hľadať min-
imum funkcionálu. Namiesto jednoduchého derivovania budeme funkcionál G varírovať, čo znamená, že skúsime,
ako sa zmení pri malej zmene funkcií φi, od ktorých závisí. Uvažujme teda takúto variáciu funkcií φi:

φi −→ φi + δφi (E.15)

Potom sa funkcionál zmení takto:

G[φ] −→ G[φ+ δφ] = G[φ] + δG (E.16)
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a obdobne sa to dá písať aj pre jeho jednotlivé zložky G(1), G(2) a L. Pre súčet jednočasticových integrálov v sume
vyššie teda máme

G(1)[φ] −→ G(1)[φ+ δφ] =
N∑
i=1

∫
(φi + δφi)

∗ ĥ(i) (φi + δφi) d3ri =

= G(1)[φ] +
N∑
i=1

∫
δφ∗

i ĥ(i) φi d3ri +
N∑
i=1

∫
[ĥ(i) φi]

∗δφi d3ri︸ ︷︷ ︸
δG(1)

+ (E.17)

+ členy 2. rádu v δφk , ktoré sú zanedbateľné

Všimnime si, že druhý člen v δG(1) je komplexne združený k prvému.
Aj pri počítaní s dvojčasticovými integrálmi budeme miestami kvôli stručnosti vynechávať písanie argumentov

funkcií φ; ak sú vynechané, tak platí φi ≡ φi(i) ≡ φi(r⃗i), φj ≡ φj(j) ≡ φj(r⃗j). Pre variáciu sumy dvojčasticových
integrálov (E.13) dostávame postupom podobným než vyššie, len zložitejším, toto [pričom využijeme, že ŵ(i, j) =
ŵ(j, i) a že sumačné indexy môžeme ľubovoľne premenovať, aj vymeniť (i↔ j) medzi sebou]:

δG(2) =
N∑

i,j=1

∫
δφ∗

i φ
∗
j ŵ(i, j) φi φj d3ri d3rj +

N∑
i,j=1

∫
φ∗
i φ

∗
j ŵ(i, j) δφi φj d3ri d3rj (E.18)

Aj tu je druhý člen komplexne združený k prvému. Aby sme spočítali aj variáciu funkcionálu G, nielen G, zostáva
ešte spočítať variáciu člena s Lagrangeovými multiplikátormi, pozri (E.14). Tá sa počíta ľahko a je

δL = −
N∑
i=1

λi

(∫
δφ∗

i φi d3r +
∫
φ∗
i δφi d3r

)
(E.19)

Teraz už vieme napísať, čomu sa rovná variácia celého funkcionáluG, pozri (E.5), (E.9). Potrebujeme na to zozbierať
výsledky (E.17), (E.18) a (E.19). Dostávame

δG ≡ G[φ+ δφ]−G[φ] = δG(1) + δG(2) + δL (E.20)

a teda

δG =
N∑
i=1

∫
d3ri δφ∗

i

(
ĥ(i) +

N∑
j=1

∫
d3rj φ∗

j ŵ(i, j)φj − λi

)
φi + k.z. (E.21)

kde k.z. označuje členy komplexne združené s predošlými.
Ako sme povedali už skôr, snažíme sa hľadať, pri akých funkciách φi je funkcionál G minimálny. Tak ako pri

funkcii je v okolí jej extrému nulová prvá derivácia, čiže v prvom ráde nulová zmena, tak pri funkcionáli je v okolí
jeho extrému nulová variácia. Preto kvôli nájdeniu minimalizujúcich funkcií φi požadujeme

δG = 0 (E.22)

Aby toto bolo splnené pre ľubovoľné variácie δφi, musí byť výraz (. . . . . . )φi vo formule (E.21) nulový.65 Musia teda
platiť rovnice [

ĥ(i) +
N∑
j=1

∫
d3rj φ∗

j(j) ŵ(i, j)φj(j)

]
φi(i) = λiφi(i) (E.23)

Pripomeňme, že ŵ(i, i) ≡ 0, a teda členy s j = i v týchto rovniciach vypadnú. „k.z.“ v rovnici (E.21) nám dá
len komplexne združenú rovnicu ku práve napísanej, teda žiadnu novú rovnicu. Na označení integračnej premen-
nej r⃗j v rovniciach (E.23) nemôže záležať. Ani písanie indexu i vo vonkajšej premennej r⃗i teraz už nie je nutné.
Rovnice (E.23) sa preto dajú písať (trochu podrobnejšie) aj takto:ĥ(r⃗) + N∑

j=1
j ̸=i

e2

4πε0

∫
d3r′ φ∗

j(r⃗
′)

1

|r⃗ − r⃗ ′|
φj(r⃗

′)

φi(r⃗) = λiφi(r⃗) i ∈ {1, 2, . . . , N} (E.24)

65Samotný obsah tých zátvoriek nemá číselnú hodnotu, je to len operátor. Preto v tom nulovom výraze musí byť sprava aj φi.
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Rovnice (E.24) predstavujú sústavuN integrálno-diferenciálnych rovníc pre neznáme funkcieφi. Vyriešením týchto
rovníc teda nájdeme funkcie, ktoré extremalizujú (zvyčajne minimalizujú) funkcionál G. Hodnota tohoto funk-
cionálu v takom prípade je približnou vlastnou energiou základného stavu sústavy. Sústava rovníc (E.24) [tak isto
aj (E.23)] sa nazývaHartreeho rovnice (HR). Jednotlivé rovnice tejto sústavy svojou formou pripomínajú bezčasovú
Schrödingerovu rovnicu.

The physical meaning of the sum in the Hartree equations. Na jeho pochopenie stačí najprv v i-tej HR skúmať
jeden člen (t. j. pre jedno j rôzne od i). Hodnota výrazuφ∗

i (r⃗
′)φi(r⃗

′) je hustota pravdepodobnosti výskytu elektrónu
s vlnovou funkciou φj(r⃗

′) v mieste r⃗ ′. Výraz (−e)|φj(r⃗
′)|2 je potom hustota elektrického náboja vytváraná takým

elektrónom; je to hustota v kvantovo-mechanickom zmysle priemernej hodnoty v danom bode priestoru. Výraz∫
1

4πε0

(−e)|φj(r⃗
′)|2

|r⃗ − r⃗ ′|
d3r′ def

= uj(r⃗) (E.25)

je priemerný elektrostatický potenciál v mieste r⃗ vytváraný elektrónom s vlnovou funkciou φj(r⃗
′). Preto

N∑
j=1
j ̸=i

uj(r⃗)
def
= UHartree

i (r⃗) (E.26)

je ustrednený elektrostatický potenciál, ktorý vytvárajú v mieste r⃗ všetky elektróny okrem i-teho (t. j. toho, ktorý
obsadzuje orbitál φi). Voláme ho aj Hartreeho potenciál. Celá suma cez j v HR teda je

N∑
j=1
j ̸=i

e2

4πε0

∫
d3r′ φ∗

j(r⃗
′)

1

|r⃗ − r⃗ ′|
φj(r⃗

′) = −eUHartree
i (r⃗) = V Hartree

i (r⃗) (E.27)

amá význam potenciálnej energie i-teho elektrónu v ustrednenompoli všetkých ostatných elektrónov. Je priestorovo
závislá (preto sa nazýva potenciálna) a často ju preto tiež nazývajú Hartreeho potenciál [ale treba mať na pamäti,
že v SI sústave majú potenciál a potenciálna energia odlišné jednotky a teda nie sú to totožné veličiny, i keď sa líšia
len o triviálny násobok (−e)].

V tejto súvislosti si ešte všimnime sumuG(2) elektrón-elektrónových odpudivých energií vyjadrenú príspevkom (E.13).
Na základe vyššie zavedenej Hartreeho potenciálnej energie sa dá zapísať

G(2) =
1

2

N∑
i=1

∫
φ∗
i (r⃗)V

Hartree
i (r⃗)φi(r⃗) d3r (E.28)

Orbitals in the Hartree Equations. The Effective Orbitals-Dependent Hamiltonian. HR (E.24) sa teda dajú kom-
paktne zapísať [

ĥ(r⃗) + V Hartree
i (r⃗)

]
︸ ︷︷ ︸

ĥeff
i

φi(r⃗) = λiφi(r⃗) (E.29)

Veľmi pripomínajú sústavu navzájom nezávislých rovníc (263) z motivačnej časti. Je tu však jedna komplikácia:
efektívny jednočasticový potenciál v (E.29) závisí od orbitálov φj , čo sú neznáme funkcie. Tieto neznáme funkcie
v HR vystupujú v kubickej forme. HR sú preto nelineárne a nie sú až tak jednoduché, ako sme si to na začiatku
predstavovali v motivačnej časti.

Jednotlivé orbitály φi sú vlastnými funkciami navzájom odlišných efektívnych hamiltoniánov (ktoré sa preto
tiež musia indexovať). Vyriešením HR tak dostaneme orbitály, ktoré nie sú navzájom ortogonálne. Podmienku
ortogonálnosti sme ani nikde nepoužili. Naozaj: pri minimalizácii sme len naložili podmienku (E.4), že orbitály
majú byť normované na 1.
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Solution of the Hartree equations. HR predstavujú sústavu N integrálno-diferenciálnych rovníc. Rieši sa metó-
dou postupných iterácií: na začiatku si zvolíme nejaké štartovacie funkcie

φ
(0)
1 , φ

(0)
2 , . . . , φ

(0)
N (E.30)

Napr. ak riešime HR pre atóm, tak za φ(0)
i môžeme zvoliť presne známe vlastné funkcie pre vodíku podobný ión.

Z týchto štartovacích funkcií určíme začiatočnú hodnotu Hartreeho potenciálu U (0)
i (r⃗) (ktorá je určite ešte veľmi

nesprávna). Z U (0)
i (r⃗) potom riešením HR dostaneme už spresnené (ale stále veľmi hrubé) jednočasticové funkcie

φ
(1)
1 , φ

(1)
2 , . . . , φ

(1)
N (E.31)

a aj prvý odhad Lagrangeových multiplikátorov λ(1)i . Tým máme ukončenú prvú iteráciu. A tak ďalej iterujeme, až
raz skončíme, a to napr. vtedy, keď rozdiel medzi výstupmi po sebe idúcich iterácií bude zanedbateľný. Vtedy už
budú orbitály φi konzistentné s Hartreeho potenciálom. Výsledné elektrostatické pole od uvažovaných elektrónov
nazývame self-konzistentné pole; pojem samosúhlasné pole sa používa menej často.

O význame vlastných hodnôt a jednočasticových funkcií sme si povedali pri štúdiu Hartreeho-Fockovej metódy.
Samotná Hartreeho metóda sa v praxi používa zriedka, lebo nerešpektuje antisymetriu vlnovej funkcie.

F Functionals

F.1 An Intuitive Explanation of Functionals

Taylor expansion of a function of one variable:

f(x+∆x) = f(x) +
1

1!

df
dx

∣∣∣∣
x

∆x+
1

2!

d2f
dx2

∣∣∣∣
x

(∆x)2 +
1

3!

d3f
dx3

∣∣∣∣
x

(∆x)3 + . . . (F.1)

Taylor expansion of a function ofm variables:

f(x1 +∆x1, x2 +∆x2, . . . , xn +∆xm) = (F.2)

f(x1, x2, . . . , xm) +
1

1!

m∑
i=1

∂f

∂xi

∣∣∣∣
x

∆xi +
1

2!

m∑
i=1

m∑
j=1

∂2f

∂xi∂xj

∣∣∣∣
x

(∆xi) (∆xj) + . . .

The vertical lines |x says us: do the derivative and then evaluate it at x. For the functions on n variables, we used
the shortcut

x ≡ x1, x2, . . . , xm (F.3)

A Functional. It is a mathematical form that depends on some function, i.e. not on an elementary variable or
variables like x1, …, xm. A nice examples is the Thomas-Fermi (TF) kinetic-energy functional (410):

TTF[n] = CF

∫
n5/3(r⃗) d3r (F.4)

It depends on the electron densityn(r⃗), which itself is a function. Let us further use the notationF [n] for a functional
depending of a function n(r⃗) (which need not necessarily be a density). The function n(r⃗) is defined on some
spatial domain D (which can be either finite such as a cubic box or a sphere) or infinite. In any such case, the
domain contain an infinite number of spatial points that typically form a continuum and we will consider this type
of damains. We can, however, discretise the spatial domain, i.e. to divide it between some finite number of grid
points. Such a procedure is often being done for a purpose like numerical integration (quadrature) and, certainly,
we would find several other examples from numerical mathematic. Here, however, we use the discretisation of space
for the purpose of a theoretical analysis. Let the grid points be

r⃗1, r⃗2, . . . , r⃗m (F.5)
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In such a discrete representation, the functional F [n] becomes a function ofm spatial variables:

F (n(r⃗1 ), n(r⃗2 ), . . . , n(r⃗m )) (F.6)

To make notation more compact we introduce
ni ≡ n(r⃗i ) (F.7)

and then the liist of the variables on which the function F depends, is n1, n2, . . . , nm:

F = F (n1, n2, . . . , nm) (F.8)

Let us now consider that the function n(r⃗) is slightly modified by an amount δn(r⃗):

n(r⃗) −→ n(r⃗) + δn(r⃗) (F.9)

How the functional F [n] changes upon such variation of n(r⃗)? Formally, we express the variation δF [n] of the
functional F [n] as follows:

F [n] −→ F [n+ δn] = F [n] + δF [n] (F.10)

The last equation defines what is meant by a variation of a functional, δF [n]; the term variation is used for func-
tionals, not for functions. Since we have discretised the functional [converted it to the function (F.8)] and since the
quantities δn(r⃗) are small enough, we can now take advantage of the Taylor expansion (F.2) to answer the above
question by calculating F [n+ δn] in the discrete representation:

F (n1 + δn1, . . . , nm + δnm) = F (n1, . . . , nm) + (F.11)

+
m∑
i=1

∂F

∂ni

∣∣∣∣
n

δni +
1

2

m∑
i=1

m∑
j=1

∂2F

∂ni∂nj

∣∣∣∣
n

δni δnj + . . .

Because the grid can be very dense, we can replace the summations over the grid points by integrals over the spatial
domain D:

F (n1 + δn1, . . . , nm + δnm) = F (n1, . . . , nm) + (F.12)

+

∫
D

∂F

∂n(r⃗)

∣∣∣∣
n

δn(r⃗) d3r +

+
1

2

∫
D
d3r
∫
D
d3r′ ∂2F

∂n(r⃗)∂n(r⃗ ′)

∣∣∣∣
n

δn(r⃗) δn(r⃗ ′) + . . .

Thus, after the short trip to common functions, we are back to the world of functionals; the last formula in the brief
language of functionals is rewritten as

F [n+ δn] = F [n] +

∫
D
d3r δF

δn(r⃗)

∣∣∣∣
n

δn(r⃗) + (F.13)

+
1

2

∫
D
d3r
∫
D
d3r′ δ2F

δn(r⃗)δn(r⃗ ′)

∣∣∣∣
n

δn(r⃗) δn(r⃗ ′) + . . .

The expressions
δF

δn(r⃗)
,

δ2F

δn(r⃗)δn(r⃗ ′)

are the first and the second functional derivatives of the given functional, F [n], respectively. In the above exansions,
they are evaluate at the density n(r⃗) [not at n(r⃗) + δn(r⃗)]. By comparing (F.13) to (F.12) we immediatelly see the
principal meaning of the concept of a functional derivative.

By definition, a variation of the functional is defined by [see (F.10)]

δF [n] = F [n+ δn]− F [n] (F.14)
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Now, if we are searching for a local extremum (a minimum or maximum) of the functional, the necessary condition
expressed in the discretised form is

∂F

∂ni

∣∣∣∣
ext

= 0 , ∀i ∈ {1, 2, . . . ,m} (F.15)

We see that the functional form of this condition is

δF

δn(r⃗)

∣∣∣∣
n0

= 0 (F.16)

(the necessary condition of a local extremum of the functional). Very often, this equation is sufficient to use do de-
termine a minimum or maximum. Its solution is the extermising function n0(r⃗), i.e. the one at which the functional
takes its minimum or maximum (may not be a global one).

If δn is very small in (F.13), the first two terms then become sufficient to keep and we can then express vari-
ation (F.14) around some arbitrary chosen function n(r⃗) as

δF [n] =

∫
D
d3r δF

δn(r⃗)

∣∣∣∣
n

δn(r⃗) , for δn(r⃗) → 0 (F.17)

If the chosen function n(r⃗) is n0(r⃗), then the variation δF [n] vanishes. Hence, we derived the frequently used
formula of the variational calculus:

δF [n] = 0 at a local minimum or maximum (F.18)

It is just as when differential of a common function like f(x) of eq. (F.1) vanishes at any extremal point of the
function.

F.2 On the Kohn-Sham Mapping (or Ansatz)

The Hohenberg-Kohn total-energy functional is given by (453):

Ev[n] = T [n] +W [n] +

∫
n(r⃗)vext(r⃗) d3r (F.19)

In this expression, the forms of T [n] and W [n] are unknown; hence such a functional can not have any direct
practical use. According to Kohn and Sham, we can, however, introduce the auxiliary (or reference) system of non-
interacting electrons such as to provide the same ground-state density. A wave function of such a system has the
form of a Slater determinant, exactly as in the Hartree-Fock theory. (So, both in the HF theory and in the DFT, total
wave functions are some Slater determinants.)

Denote the non-interacting kinetic energy by symbol Ts[n] [see (456)]. We now can add and substract Ts[n] in
(F.19) and regroup the terms:

Ev[n] = Ts[n] +

∫
n(r⃗)vext(r⃗) d3r +W [n] + T [n]− Ts[n] (F.20)

T [n]− Ts[n] is some difficult part of the kinetic energy. We also know that the electron-electron interation energy,
W [n], contains an “easy” component (that is, easy to express using the density). It is the Hartree energy, obviosly
a relatively big component of W [n]; see (301) for its first occurence in our course, then (413) of the Thomas-Fermi
theory, and finally (456) of the Kohn-Sham theory. So, decompose alsoW [n]:

W [n] = EHartree[n] +Wrest (F.21)

Thus, the total-energy functional (F.20) can be expressed as

Ev[n] = Ts[n] +

∫
n(r⃗)vext(r⃗) d3r + EHartree[n] + T [n]− Ts[n] +Wrest︸ ︷︷ ︸

Exc[n]

= (F.22)

= EKS[n]
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(It is the same expression as (456). And it has to be understood as the definition of Exc[n].) So, the difficult-to-
express but, fortunatelly, relatively small part was denoted as Exc[n]. It is called exchange-correlation energy.
We know from the HF theory that there must be the exchange-energy contribution to the total energy. Since this
contributions is neither in Ts[n] nor in the interaction energy with the external field, it then obviously must be a
part of T [n]− Ts[n] +Wrest ≡ Exc[n]. A similar consideration holds for the correlation energy.

Now, if we want to find a local minimum of the Kohn-Sham functional, (F.22), we have to keep the correct
number of the electrons, N , in the minimisation. We do in using a Lagrange multiplier, exactly as we have done it
in the TF theory, see (415). Therefore, again an augmented functional,

ΩKS[n] = EKS[n]− µ

[∫
n(r⃗) d3r −N

]
(F.23)

is to be minimised. We do the minimisation by requesting that at the minimising density n0(r⃗),

δΩKS[n] = 0 (F.24)

for very small variations δn(r⃗) around the minimising density. Alternatively, we can set the condition (see sec-
tion F.1)

δΩKS

δn(r⃗)

∣∣∣∣
n0

= 0 (F.25)

This yields the Kohn-Sham equation for the ground-state density n0 which is the density that minimises the func-
tional ΩKS[n], also (and importantly) the Kohn-Sham functional (F.22) [and also the orginal functional (F.19) of
Hohenberg and Kohn] as that one is equal to the KS functional by definition. Note also, that people often omit the
term with N in (F.23) for it is a constant only and has no effect in the serach for the minimum.

In practical calcuations, we are not able to find the exact functionalExc[n]. Therefore, although the exact equality
of the HK and KS functionals holds in theory, we do not meet it in practice.

110



References

[1] Peter Lichard, lectures from the acad. year 1991/1992, Faculty of Mathematics and Physics of the Comenius
University in Bratislava. Poossibly also scripts Kvantová mechanika (Univerzita Komenského, Bratislava 1984).

[2] Ján Pišút, Ladislav Gomolčák, Vladimír Černý, Úvod do kvantovej mechaniky, 2nd edition (Alfa, Bratislava 1983).

[3] Albert Messiah, Quantum Mechanics, Two Volumes Bound as One (Dover Publications, inc., Mineola 1999).

[4] Claude Cohen-Tannoudji, Bernard Diu, Franck Laloë, Quantum Mechanics, Vol. 1., 2nd edition (Wiley-VCH,
Weinheim 2019).

[5] https://en.wikipedia.org/wiki/Spherical_harmonics Spherical harmonics.

[6] George B. Arfken, Mathematical methods for physists, 3rd edition (Academic press, inc., Orlando, 1985).

[7] Atilla Szabo, Neil S. Ostlund, Modern quantum chemistry (Dover publications, inc., Mineola, 1996).

[8] Frank L. Pilar, Elementary quantum chemistry, 2nd edition (McGraw-Hill Pub. 1990, New York; Dover 2001,
Mineola).

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical recipes, 3rd edition,
(Cambridge University Press, Cambridge 2007).
This is the latest version of the „Numerical recipes“. It makes effor to promote object-oriented programming in
C++ and it includes two new chapters. The topics we deal with are presented in most cases quite similarly in
this book as in the older edition Numerical recipes in C [10].

[10] William H. Press, Saul A. Teukolsky, William T. Vetterling, Brian P. Flannery, Numerical recipes in C, Second
Edition, (Cambridge University Press, Cambridge 1992);
the full text is freely available at http://s3.amazonaws.com/nrbook.com/book_C210.html .
There are older and newer editions of the „Numerical recipes“; see http://numerical.recipes .
At some topics it is, however, better to read the theory from the most up-to-date edition [9].

[11] Robert G. Parr, Weitao Yang, Density Functional Theory of Atoms and Molecules, (Oxford University Press, New
York 1989).

[12] Richard M. Martin, Electronic Structure, (Cambridge University Press, Cambridge 2004).

[13] P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review 136, B864 (1964).

[14] W. Kohn, L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Physical Review 140,
A1133 (1965).

[15] C. Fiolhais, F. Nogueira, M. Marques (editori), LECTURE NOTES IN PHYSICS, A Primer in Density Functional
Theory, (Springer-Verlag Berlin Heidelberg 2003).

111

https://en.wikipedia.org/wiki/Spherical_harmonics
http://s3.amazonaws.com/nrbook.com/book_C210.html
http://numerical.recipes


Contents

1 Reminder of Basis Postulates ofQuantum Mechanics 1

1.1 The First Postulate of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 The Second Postulate of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Mean Values of the Coordinates. Pure Quantum Ensemble . . . . . . . . . . . . . . . . . . . 2
1.2.2 Mean Value of the x-component of the Momentum . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Position Operator, Momentum Operator and Other Operators . . . . . . . . . . . . . . . . . 4
1.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.5 Eigenfunctions and Eigenvalues of Operators . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.6 Formulation of the Second Postulate of Quantum Mechanics . . . . . . . . . . . . . . . . . . 7

1.3 The Third Postulate of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 The Fourth Postulate of Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Stationary states (a brief reminder) 9

3 (Non)-commuting operators and the uncertainty relation 9

3.1 Common Eigenfunctions of Commuting Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The Uncertainty Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Angular Momentum inQuantum Mechanics 11

4.1 Definitions and Basic Commutation Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Spherical Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.3 Eigenfunctions and Eigenvalues of the L̂z Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Common Eigenfunctions of Operators L̂z a L̂2 (Part 1). Separation of Variables in Spherical Co-

ordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.5 Eigenvalues of the Angular Momenta Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.6 Common Eigenfunctions of Operators L̂z and L̂2 (Part 2) . . . . . . . . . . . . . . . . . . . . . . . . 19

4.6.1 Action of L̂z and L̂2 on Polynomials f = ax+ by . . . . . . . . . . . . . . . . . . . . . . 20
4.6.2 Action of L̂z and L̂2 on the Polynomials f = ax2 + by2 + cxy . . . . . . . . . . . . . . . 21
4.6.3 Overall Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5 Particle in a Spherically Symmetric Force Field 25

5.1 General Spherically Symmetric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2 The Hydrogen Atom and Like Ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2.1 The Eigenenergies and Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.2.2 Calculations of the Radial Wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Approximate Methods of Solving the Stationary Schrödinger Equation for Bound States 35

6.1 The Variational Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.1.1 An often used Version of the Variational Method . . . . . . . . . . . . . . . . . . . . . . . . 38

6.2 The Perturbation Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

112



7 Internal Angular Momentum and Internal Magnetic Dipole Moment of Electron 41

7.1 Experimental Facts Confirming Existence of Spin in Quantum Mechanics . . . . . . . . . . . . . . . 41
7.2 Eigenvalues and Eigenvectors of Spin Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3 Pauli Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Wavefunction of a Spin 1/2 Particle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

8 Systems of Many Electrons 45

8.1 Generalisation of the 1st Postulate: Many-Particle Wave Function66 . . . . . . . . . . . . . . . . . . 45
8.1.1 One Particle (N = 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.1.2 Two Particles (N = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

8.2 The 4th Postulate: Schrödinger Equation for the Many-Particle Wave Function . . . . . . . . . . . . 46
8.3 System of Identical Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
8.4 Eigenvalues and Eigenfunctions of the P̂ij operator . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
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