SiO₂ as Oxygen Target to Study Nuclear Reactions Induced by Protons in the Hadrontherapy Energy Range

Izabela Skwira-Chalot¹, Przemysław Sękowski¹, Joanna Matulewicz¹, Sebastian Kusyk², Adam Spyra¹, Jan Swakoń², Wiktoria Szcześniak¹, Agata Taranienko¹, Damian Wróbel² and Tomasz Matulewicz^{1, a)}

¹University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warszawa, Poland ²Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

^{a)} Corresponding author: tomasz.matulewicz@fuw.edu.pl

Abstract. The commercially available SiO₂ samples were successfully used as nuclear targets to study proton-induced reactions on oxygen in the energy range used in hadrontherapy. The stack of target was irradiated simultaneously with proton beam of initial energy equal to 58 MeV. The reactions (p,d), (p, α) and (p, α d) on ¹⁶O lead to the production of β^+ emitters ¹⁵O, ¹³N and ¹¹C. Their decay, leading to the emission of two 511 keV annihilation γ -quanta, was measured in LaBr₃:Ce scintillation detectors. Decay spectroscopy of 511 keV line was applied, allowing to disentangle β^+ decays with relative intensities determined within few % precision. No β^+ activity originating from the short-lived reactions on Si was observed, as the measurements started few minutes after the irradiation. No significant modification of the surface of irradiated SiO₂ targets was observed in AFM study; however, some changes are seen.