MoS₂ and WS2 Heterostructures Synthesized in Graphene Oxide at Ambient Conditions

Viera Skakalova ^{1,2,3, a)}, Peter Kotrusz^{2,3}, Thuy An Bui¹, Marian Precner³, Artem Pershin^{2,3}, Martin Hulman^{2,3}, and Kimmo Mustonen¹

¹Physics of Nanostructured Materials, University of Vienna, Austria
²Danubia NanoTech, s.r.o., Bratislava, Slovakia
³Institute of Electrical Engineering, SAS, Bratislava, Slovakia

a) Corresponding author: viera.skakalova@univie.ac.at

Abstract. In a previous work [1], we introduced a simple chemical synthesis of 2D metal iodides (2D-MI) embedded between graphene sheets where the desired 2D-MI is formed in graphene oxide at ambient conditions. Recently we succeeded to extend the method to synthesize 2D transition metal dichalcogenide, MoS₂ and WS₂, encapsulated in graphene. Similar to the previous synthesis conditions, these chemical reactions also run under ambient conditions. In this work, flakes of single-layer MoS₂ and WS₂ embedded between graphene sheets were widely characterised by Raman and electron energy loss spectroscopy, confirming presence of WS₂ or MoS₂ with reduced graphene oxide, whereas scanning transmission electron microscopy images show a dense appearance of single layer crystals of WS₂ or MoS₂ separated by graphene. The results of electrical conductivity measured in the temperature range from 4.2 up to 340 K indicate that the electronic transport is mediated through graphene flakes percolated network, significantly doped by 2D crystals of MoS₂ and WS₂. We also observe negative magneto-resistance at low temperatures typical for weak localization mechanism in disordered systems.

REFERENCE

[1] Mustonen, K. et al., Advanced Materials 2106922 (2022)