Ultrafast Nonequilibrium Dynamics of Room Temperature Charge Density Wave Fluctuations in 1T-TiSe₂

Jakub Schusser^{1,2 a)}, Hibiki Orio², Sotirios Fragkos³, Nina Girotto Erhardt⁴, Akib Jabed³, Sarath Sasi¹, Quentin Courtade³, Muthu Masilamani², Maximilian Ünzelmann², Florian Diekmann^{6,7}, Baptiste Fabre³, Dominique Descamps³, Stéphane Petit³, Fabio Boschini⁵, Jan Minar¹, Yann Mairesse³, Claude Monney⁸, Friedrich Reinert², Kai Rossnagel^{6,7}, Dino Novko⁴, Samuel Beaulieu³

¹New Technologies-Research Center, University of West Bohemia, 30614, Pilsen, Czech Republic

²Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg, D-97074, Würzburg, Germany

³Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405 Talence, France ⁴Centre for Advanced Laser Techniques, Institute of Physics, 10000 Zagreb, Croatia ⁵Institut National de la Recherche Scientifique – Energie Matériaux Télécommunications Varennes, QC J3X 1S2, Canada

 ⁶Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, D-22607, Hamburg, Germany
⁷Institute of Experimental and Applied Physics, Kiel University, D-24098, Kiel, Germany
⁸University of Fribourg and Fribourg Centre for Nanomaterials, Chemin du Musée 3, CH-1700 Fribourg, Switzerland

a)Corresponding author: <u>schusser@ntc.zcu.cz</u>

1T-TiSe₂ is known to exhibit a charge-density-wave (CDW) transition below 200 K, a phenomenon that arises from an interaction between excitons and phonons. This makes TiSe₂ an ideal system for studying the coupling between electronic states and lattice vibrations. While the band structure changes accompanying the low-temperature CDW phase are well characterised, the nature of CDW-related fluctuations at higher temperatures remains to be disentangled. In this work, we use time-resolved ultraviolet angle-resolved photoemission spectroscopy combined with density functional perturbation theory and directly observe signatures of CDW fluctuations at room temperature. We examine how these fluctuations respond to ultrafast, non-resonant optical excitation and uncover a persistent coherent amplitude mode governing the recovery dynamics even at elevated temperatures. Our time-, energy-, and momentum-resolved photoemission results not only widen the understanding of CDW physics but also have broad implications for the study of fluctuating phases in other materials.