Study of Structure and Molecular Mobility of Thermoplastic Starch-Based Nanocomposites Using NMR

Simona Saparová^{1, a)}, Anton Baran^{1, b)}, Natália Šmídová^{1, c)}, Ivan Chodák^{2, d)} and Mária Kovaľaková^{1, e)}

¹Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia ²Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovakia

> ^{a)} Corresponding author: simona.saparova@tuke.sk ^{b)} anton.baran@tuke.sk ^{c)} natalia.smidova@tuke.sk ^{d)} ivan.chodak@savba.sk ^{e)} maria.kovalakova@tuke.sk

Abstract. The influence of montmorillonite (MMT) content on the structure and molecular mobility of thermoplastic starch-based nanocomposites with glycerol as a plasticizer was studied using nuclear magnetic resonance (NMR) spectroscopy. The increase in the width of signals in ¹H NMR spectra for samples with increasing MMT content and the broadening of signals from ¹³C nuclei in CH and CH₂ in glycerol molecules in the ¹³C NMR spectra indicate that glycerol and water molecules are intercalated in MMT particles. This results in a decrease of both water and glycerol mobility as well as the mobility of starch chains in bulk sample. On the other hand, intensities of broad signals in ¹H BL NMR spectra successively decrease with the increase of MMT content as a result of the intercalation of a small number of starch chains in MMT interlayer space resulting in their higher mobility compared to bulk sample.