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Abstract. Photoelectron diffraction (PED) is a powerful and indispensable experimental technique for resolving the structure of 

surfaces with sub-angstrom resolution. In many instances, it provides structural insights related to element specificity [1], which is 

essential for understanding phenomena related to electronic properties. In the high-energy regime, angle-resolved photoemission 

spectroscopy (ARPES) often reveals PED effects, accompanied by challenges such as small cross-sections, significant photon 

momentum transfer, and non-negligible phonon scattering [2]. Overall, X-ray PED (XPD) is not only an advantageous approach 

but also exhibits unexpected effects.  Powerful computational approaches that address single and multiple scattering in real space 

and reciprocal space have been developed earlier. However, they do share limitations related to angular momentum, cluster size 

and constrain in kinetic energy regimes. To overcome these barriers and disentangle diffraction effects, we present a PED 

implementation [3] for the SPRKKR package that uses multiple scattering theory and a one-step model [4,5]. in the photoemission 

process. In contrast to real-space implementations of the multiple scattering XPD formalism, we propose a k-space implementation 

based on the layer KKR method. The main advantage of this method is its ability to address a very broad kinetic energy range (20-

8000 eV) without convergence problems related to. The inelastic scattering is investigated as a broadening mechanism. 

Furthermore, the so-called alloy analogy model can be used to simulate XPD at finite temperatures as well as XPD effects observed 

in soft and hard X-ray ARPES. Here, the brief summary of theoretical models and practical applications [6,7] for core-level 

photoemission is addressed. 
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