On-Site Coulomb Energy in TMDC Compounds by Resonant Photoemission

Yashasvi Mehra^{1,2,3, a)}, Aki I. O. Pulkkinen³, Jan Minar³, Samuel Bealieu⁴, Sotirios Fragkos⁴, Marcin Rosmus⁵, Natalia Olszowska⁵, Edyta Beyer⁵, Tomasz Sobol⁵, Mauro Fanciulli^{1,2}, Olivier Heckmann^{1,2}, Karol Hricovini^{1,2}, and Maria Christine Richter^{1,2}

¹Université Paris-Saclay, CEA, LIDYL, Gif-sur-Yvette, France, ²CY Cergy Paris Université, CEA, LIDYL, Gif-sur-Yvette, France, ³NTC, University of West Bohemia, Pilsen, Czech Republic, ⁴Université de Bordeaux, CNRS, CEA, CELIA, UMR 5107, Talence, France, ⁵SOLARIS, National Synchrotron Radiation Centre, Jagiellonian University, Krakow, Poland

a)Corresponding author: yashasvi.mehra@cyu.fr

Abstract. The Coulomb interaction U serves as a pivotal parameter influencing electron behavior, particularly accentuated within low-dimensional materials. Transition Metal Dichalcogenides, quasi-2-D systems, exhibit diverse electronic traits like CDW order, co-existing CDW with superconductivity, and topologically non-trivial phases. Their 2D nature intensifies coulomb interaction of electrons, leading to phenomena like Mott-Hubbard transitions.

The on-site Coulomb energy for transition metal and chalcogenide atoms is determined through a method proposed by Cini and Sawatzky [1-3]. This approach is based on comparison of the energy of the correlation satellite linked to the two-valence-hole (VV)Auger final state in resonant photoemission with the uncorrelated two-valence-hole energies derived from a self-convolution of single-hole states obtained from a non-resonant photoemission spectrum. The energy difference between the main peaks of the resonantly enhanced spectrum and the uncorrelated two-hole spectrum serves as a measure of the Coulomb energy.

Here we aim to determine the on-site Coulomb interaction for each element within two series of TMDC materials (MX_2 , where X = S, Se, Te and M = Nb, Ta) by resonant ARPES.

REFERENCES

- [1] Sawatzky G. A., Phys. Rev. Lett. 39, 504 (1977).
- [2] Cini M., Phys. Rev. B 17, 2788 (1978).
- [3] Sawatzky G.A., et al. Phys. Rev. B 21, 1790 (1980).