Burnup Simulation of High-Density Fuel in a VVER-1000 Fuel Assembly

Pavel Máca^{1, a)}, Jitka Vojáčková^{1, b)}, Karel Katovský^{1, c)}, Peter Mičian,^{1, d)} and Lukáš Nesvadba^{1, e)}

¹Brno University of Technology, Faculty of Electrical Engineering and Communication, Department of Electrical Power Engineering, Antonínská 548/1, Brno 602 00, Czech Republic

> a) Corresponding author: Pavel.Maca@vut.cz b) vojackova@vutbr.cz , ^{c)} katovsky@vut.cz ^{d)}Peter.Mician@vutbr.cz ^{e)} nesvadba@vut.cz

Abstract. This study presents a comparative neutronic analysis of four high-density fuel (HDF) candidates for potential application in VVER-1000 fuel assemblies. The evaluated fuel types include uranium-based metal, silicide, carbide, and nitride compositions. Simulations were conducted using a VVER-1000 fuel assembly model to investigate burnup behavior and the evolution of the multiplication factor throughout the fuel cycle. Based on the burnup-dependent behavior of K_{inf}, the most promising candidates are metal and nitride fuels. The findings support the feasibility of implementing selected high-density fuels to improve reactor core optimization and extend cycle length in VVER reactors.