Structure and Magnetic Froperties of Fe-Ferrite SMCs

Peter Kollár^{1, a)}, Martin Tkáč^{1, b)}, František Onderko^{1, c)}, Denisa Olekšáková^{2, d)}, Samuel Dobák^{1, e)}, Ján Füzer^{1, f)}, Mária Fáberová^{3, g)} and Radovan Bureš^{3, h)}

¹Institute of Physics, Faculty of Science, Pavol Jozef Šafárik University in Košice, Park Angelinum 9, 04154 Košice, Slovakia

²Institute of Manufacturing Management, Faculty of Manufacturing Technologies, Technical University of Košice, Bayerova 1, 08001 Prešov, Slovakia

³Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia

a) Corresponding author: peter.kollar@upjs.sk

Abstract. We investigated the structure and magnetic properties of the soft magnetic composites consisting of iron particles with a size from $125~\mu m$ to $200~\mu m$. The powder particles were mechanically smoothed and coated by the two - insulation layers. First SiO2 layer of was prepared Stöber method and second Ni-Zn/Cu-Zn soft ferrite nano-sized grains layer with different content was prepared by mechanofusion. The ring-shaped compacts were consolidated by the high-pressure compaction. The coercivity, magnetization curves, frequency dependence of total energy losses and complex permeability were analyzed. The analyze revealed the best magnetic properties of the material with a 2% (for permeability) or 5% (for total energy loss) volume fraction of Ni-Zn/Cu-Zn ferrite coating prepared by mechanofusion.

b) martin.tkac@student.upjs.sk, c) frantisek.onderko@upjs.sk, d) denisa.oleksakova@tuke.sk, e) samuel.dobak@upjs.sk, f) jan.fuzer@upjs.sk, g) mfaberová@saske.sk, h) rbures@saske.sk