Quasiparticle Interference Patterns of Ising Superconductor Monolayer NbSe_{2} with Rashba Spin-Orbit Coupling

Jozef Haniš ${ }^{1, \text { a) }}$, Marko Milivojević ${ }^{2}$ and Martin Gmitra ${ }^{1,3}$
${ }^{1}$ Department of Theoretical Physics and Astrophysics, Institute of Physics, Pavol Jozef Šafarik University in Košice, Park Angelinum 9, 04001 Košice, Slovakia
${ }^{2}$ Institute of Informatics, Slovak Academy of Sciences, Dúbravská cesta 9
84507 Bratislava 45, Slovakia
${ }^{3}$ Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 04001 Košice, Slovakia

${ }^{\text {a) }}$ Corresponding author: jozef.hanis@student.upjs.sk

Abstract

The layered bulk superconductor based on transition metal dichalcogenides of the NbSe_{2} family have variety of unconventional superconductivity [1-3]. They exhibit a special form of non-conventional superconductivity with Ising order pairing mechanism [4] with an exceptional consequence of protecting the superconductivity in high upper critical magnetic field parallel to the NbSe_{2} layer [5]. In the talk we discuss electronic structure of NbSe_{2} monolayer on the substrate modelled by single-band model with $\mathrm{C}_{3 \mathrm{v}}$ symmetry. We present possible types of superconducting pairing functions and their manifestation in quasiparticle interference patterns considering a scalar impurity using Tmatrix approach [6]. For the electronic structure calculations, we employ a tight-binding model with Rashba spin-orbit coupling fitted to the first-principles calculations.

This work was supported by the project APVV SK-PL-21-0055, VEGA Grant No. 1/0105/20, Slovak Academy of Sciences project IMPULZ IM-2021-42, project FLAG ERA JTC 2021 2DSOTECH, and European Union's Horizon 2020 Research and Innovation Programme under the Programme SASPRO 2 COFUND Marie Sklodowska-Curie grant agreement No. 945478.
[1] X. Xi et al., Nature Physics 12, 139 (2016).
[2] A.Devarakonda et al., Science 370, 6513 (2020)
[3] H. Zhang et al., Nature Physics 18, 1425-1430 (2022)
[4] T.Samuely et al., arXiv:2304.03074
[5] P. Szabó et al., Phys. Rev. Lett. 86, 5990 (2001).
[6] C. Bena, S. A. Kivelson, Phys. Rev. B 72125432 (2005).

