Simple Model for Heat Transfer in Magnetic Nanofluid-Enhanced Oil-Filled Transformers

Miroslava Zemanová Diešková, Soňa Kotorová, Goran Bulatovič, and Peter Bokes^{a)}

Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 841 04 Bratislava, Slovak Republic

^{a)} Corresponding author: peter.bokes@stuba.sk

Abstract. This article introduces a simplified model for analyzing heat transfer in oil-filled transformers enhanced with magnetic nanofluids. The model integrates natural convection with thermomagnetic effects to predict the cooling performance of transformer oil channels and fins. The study employs a combination of theoretical formulations and Finite Element Method (FEM) simulations to evaluate the impact of magnetic field on heat transfer characteristics. The results indicate a notable contribution of thermomagnetic convection to the overall cooling efficiency, providing insights into the design and optimization of transformer cooling systems.

ACKNOWLEDGMENTS

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-22-0115. The authors would like to thank Jaroslav Tóbik for usefull discussions.