ARPES Studies of Selected Cerium Heavy Fermion Systems

P. Starowicz¹, R. Kurleto¹, M. Rosmus¹, Ł. Walczak², A. Tejeda³, K. Treiber⁴, F. Reinert⁴, M. Szlawska⁵, D. Gnida⁵, J. Goraus⁶, D. Kaczorowski⁵

¹Marian Smoluchowski Institute of Physics, Jagiellonian University, 30-348, Krakow, Poland
²Research and Development Department, PREVAC sp. z o.o., Raciborska 61, 44-362 Rogów, Poland
³Laboratoire de Physique des Solides, UMR 8502, Université Paris-Sud, 91405 Orsay, France
⁴Universität Würzburg, Experimentelle Physik VII, Am Hubland, D-07074 Würzburg, Germany

⁵Institute of Low Temperature and Structure Research, PAS, P.O. Box 1410, 50-950 Wrocław, Poland

⁶Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland

Corresponding author: pawel.starowicz@uj.edu.pl

Abstract. Hybridization between Cerium 4f electrons and conduction band leads to various interesting phenomena such as a Kondo effect, formation of heavy fermions or valence fluctuations. It may also play an important role in a realization of quantum phase transitions. Such a hybridization - V_{cf} may have a nontrivial form including a dependence on a wave vector. It is reflected in a spectral function, which can be registered with angle-resolved photoemission spectroscopy (ARPES).

We studied different Cerium intermetallics, which exhibit properties of heavy fermion systems. $Ce_2Co_{0.8}Si_{3.2}$ has increased specific heat coefficient of C/T =200 mJ/(mole_{Ce} K²) and shows the properties of a Kondo lattice below 80 K. Two other systems, CeCoIn₅ and Ce₃PdIn₁₁ are also heavy fermion materials with a transition to a superconducting state at 2.3 K and 0.42 K, respectively. Their specific heat coefficient amounts to 290 and 550 mJ/(mole_{Ce} K²) for CeCoIn₅ and Ce₃PdIn₁₁, respectively. Such large values of the Sommerfeld coefficient indicate that strong V_{cf} hybridization effects should be present in the investigated systems.

Band structure of Ce₂Co_{0.8}Si_{3.2} was scanned by ARPES along $\overline{\Gamma} - \overline{Y} - \overline{\Gamma}$ direction [1]. Both surface and bulk states are found in the spectra. Intensity of a coherent peak related to 4f electrons, which is observed near Fermi energy (E_F), varies considerably along the Fermi surface. This fact can be explained by matrix element effects and anisotropic V_{cf} hybridization.

Electronic structure of CeCoIn₅ was mapped with Ce 4d-4f resonance (122 eV) and off resonance (84 eV) photon energy. Both energies correspond to similar semi-planar cuts of Brillouin zones in a vicinity of Γ point. The ARPES studies realized in different experimental geometry reveal matrix element effects. Moreover, evidence of V_{cf} hybridization is reflected in the spectra in the energy scale of ~ 8 meV. One can distinguish narrow bands and highly correlated bands with a large spectral width. Contribution of f-electrons also depends on the region of Fermi surface.

On resonance (122 eV) ARPES mapping of Ce_3PdIn_{11} revealed more complex Fermi surface as compared to CeCoIn₅. Strong deviations from non-interacting dispersions lead to large effective mass bands observed near E_F .

Acknowledgments

This work was supported by the project CEDAMNF, reg. no. CZ.02.1.01/0.0/0.0/15_003/0000358, co-funded by the European Regional Development Fund (ERDF).

References

[1] P. Starowicz, R. Kurleto, J. Goraus, H. Schwab, M. Szlawska, F. Forster, A. Szytuła, I. Vobornik, D. Kaczorowski, and F. Reinert, Phys. Rev. B **89** (2014) 115122.