Effects of Liquid Isoprene Rubber and Glycerol Content on the Structure and Molecular Mobility of Thermoplastic Starch/PBAT Blends During Storage

Simona Saparová^{1, a)}, Ol'ga Fričová^{1, b)}, Natália Šmídová^{1, c)}, Hamed Peidayesh^{2, d)}, Ivan Chodák^{2, e)}, and Mária Koval'aková^{1, f)}

¹Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice,
Park Komenského 2, 042 00 Košice, Slovak Republic

²Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovak Republic

a) Corresponding author: simona.saparova@tuke.sk
b) olga.fricova@tuke.sk
c) natalia.smidova@tuke.sk
d) hamed.peidayesh@savba.sk
e) ivan.chodak@savba.sk
f) maria.kovalakova@tuke.sk

Abstract. The effects of liquid isoprene rubber and glycerol content on the structure and molecular mobility of thermoplastic starch/PBAT blends during storage were studied using nuclear magnetic resonance. ¹H NMR measurements indicated possible interactions between liquid isoprene rubber and CH₂/OCH₂ groups in PBAT. The decrease in molecular mobility observed during storage is caused by the formation of crystalline phase in TPS deduced from the shape of C1 carbon resonance in ¹³C CP/MAS NMR spectra. Crystalline phase formation was slowed down in the samples with glycerol:liquid isoprene rubber ratio of 10:1.