Detection and Spectrometric Properties of the 4H-SiC Schottky Detectors Based on Thick Epitaxial Layers

Bohumír Zaťko^{1, a)}, Andrea Šagátová², and Eva Kováčová¹

a) Corresponding author: bohumir.zatko@savba.sk

Abstract. Silicon carbide (SiC) is a promising semiconductor material for radiation detectors. The spectrometric properties of prepared Schottky barrier detectors were investigated. The 4H-SiC detectors have been fabricated from high quality epitaxial layers supplied by two different manufacturers. The epitaxial layers have different thicknesses of 80 μ m and 100 μ m and different doping concentrations of about 7×10^{13} cm⁻³ and 2×10^{14} cm⁻³ respectively. Schottky contacts based on Ni/Au double layers with two diameters of 2 and 3 mm were fabricated on the top side (epitaxial layer). On the back side the full area Ti/Pt/Au ohmic contact were fabricated. Detectors were placed in the vacuum chamber and connected to the spectrometric chain. As a source of radiation, the triplet alpha particle radioisotope ²³⁹Pu²³⁸Pu²⁴⁴Cm was used. The used radiation source produces alpha particles with energies between 5.16 MeV and 5.8 MeV. The 4H-SiC detectors were tested at different biases up to 150 V. The obtained best energy resolution was about 19.6 keV for 5.5 MeV alpha particles.

ACKNOWLEDGMENTS

This work was partially supported by grants of the Slovak Research and Development Agency Nos. APVV-22-0382, APVV-18-0243, DS-FR-22-0012, Ministry of Education, Youth and Sports of the Czech Republic, grant No. SK-CZ-RD-21-0116 (CZ no. LU-ASK22147) and of the Scientific Grant Agency of the Ministry of Education of the Slovak Republic and the Slovak Academy of Sciences No. 2/0063/24.

¹ Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovak Republic

² Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 841 04 Bratislava, Slovak Republic