NMR Study of Blends of Thermoplastic Starch and Poly(Butylene-Adipate-Co-Terephthalate) Compatibilized with Liquid Isoprene Rubber

Simona Saparová^{1, a)}, Ol'ga Fričová^{1, b)}, Natália Šmídová^{1, c)}, Hamed Peidayesh^{2, d)}, Ivan Chodák^{2, e)}, and Mária Koval'aková^{1, f)}

¹Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovak Republic

²Polymer Institute, Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava 45, Slovak Republic

a) Corresponding author: simona.saparova@tuke.sk

b) olga.fricova@tuke.sk

c) natalia.smidova@tuke.sk

d) hamed.peidayesh@savba.sk

e) ivan.chodak@savba.sk

f) maria.kovalakova@tuke.sk

Abstract. This paper presents an investigation into blends of thermoplastic starch plasticized with glycerol and poly(butylene-adipate-co-terephthalate) (PBAT) compatibilized with a system consisting of liquid rubber containing carboxylic moieties and varying amounts of dicumyl peroxide. ¹H NMR spectra show increased molecular mobility in the studied samples prepared with dicumyl peroxide. This increase was probably caused by more effective compatibility between thermoplastic starch and PBAT. ¹³C CP/MAS NMR spectra show that crystallization of starch chains was slower in the samples prepared with dicumyl peroxide.

ACKNOWLEDGMENTS

The research presented was supported by the Scientific Grant Agency of the Ministry for Education of the Slovak Republic through Grant VEGA No. 1/0751/21.