Spectrometric Performance of 4H-SiC Detectors after Neutron Irradiation

Bohumír Zaťko^{1, a)}, Ladislav Hrubčín^{1, 2}, Pavol Boháček¹, Yurij Borisovič Gurov², Sergej Vladimirovič Rozov², Sergej Alexandrovič Evseev², Maxim Viktorovič Bulavin², Nikolaj Ivanovič Zamiatin², Yurij Andrejevič Kopylov², Mária Sekáčová¹ and Eva Kováčová¹

> ¹Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia ²Joint Institute for Nuclear Research, Joliot-Curie 6, RUS-141980 Dubna, Moscow Region, Russian Federation

> > ^{a)} Corresponding author: bohumir.zatko@savba.sk

Abstract. In this work the radiation hardness of 4H-SiC detectors based on epitaxial layer were studied. In the experiment two thicknesses of the epitaxial layer 25 and 50 μ m were used. Structures with Ni/Au Schottky contact of 3 mm diameter were prepared in a high vacuum apparatus. At first the spectrometric performance was tested using α -particle ²²⁶Ra radiation source. Detectors demonstrate high resolution α -particle spectroscopy. Following detectors were divided into three groups and each was irradiated with different fluencies of neutrons up to 3.4×10^{15} cm⁻². We observed the charge collection efficiency decreasing with a neutron fluence increasing.