Optimization of 3D 1×4 Multimode Interference Splitter Based on Polymer Material Platform

Stanislava Serecunova^{1,6 a)}, Dana Seyringer², Dusan Pudis^{3,4}, Tomas Mizera³, Frantisek Uherek^{5, 6} and Heinz Seyringer^{1, 2}

¹V-Research GmbH, Stadtstraße 33, 6850 Dornbirn, Austria

²Research Centre for Microtechnology, Vorarlberg University of Applied Sciences (FHV), Hochschulstraße 1, 6850 Dornbirn, Austria

³Department of Physics, FEIT UNIZA, Univerzitna 1, 010 26 Zilina, Slovakia ⁴University Science Park of the University of Zilina, Univerzitna 1, 010 26 Zilina, Slovakia ⁵International Laser Centre, Ilkovicova 3, 841 04 Bratislava, Slovakia ⁶Institute of Electronics and Photonics, FEI STU, Ilkovicova 3, 812 19 Bratislava, Slovakia

^{a)} Corresponding author: stanislava.serecunova@v-research.at

Abstract. This paper presents design, simulation, and optimization of the three-dimensional 1×4 optical multimode interference splitter using IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was simulated by using beam propagation method in BeamPROP simulation engine of RSoft photonic tool and optimized for an operating wavelength of 1.55 μ m. According to the minimum insertion loss, the dimensions of the MMI coupler and the length of the whole MMI splitter structure were optimized applying a waveguide with a core size of 4×4 μ m². The objective of the study is to create a design for fabrication by three-dimensional direct laser writing optical lithography.