The BN Samples as Targets for Studies of Nuclear Reactions on Nitrogen: ¹⁴N(p,d)¹³N at Proton Energies Used in Hadrontherapy

Przemysław Sękowski¹, Joanna Matulewicz¹, Stanisław Gierlotka², Tomasz Horwacik³, Izabela Skwira-Chalot¹, Adam Spyra¹, Swietlana Stelmakh², Jan Swakoń³, Wiktoria Szcześniak¹, Andrzej Twardowski¹ and Tomasz Matulewicz^{1, a)}

> ¹University of Warsaw, Faculty of Physics, Pasteura 5, 02-093 Warszawa, Poland ²UNIPRESS Institute of High Pressure Physics, Polish Academy of Sciences, Warsaw, Poland ³Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

> > ^{a)} Corresponding author: tomasz.matulewicz@fuw.edu.pl

Abstract. The BN samples, prepared in UNIPRESS by sintering BN powder at 1000°C under 7.7 GPa pressure, or available commercially from Saint-Gobain, were successfully used as nuclear targets irradiated simultaneously with proton beam of initial energy equal to 58 MeV. The reaction ¹⁴N(p,d)¹³N was studied through the measurement of β^+ decay of ¹³N, leading to the emission of two 511 keV annihilation γ -quanta measured in LaBr₃:Ce scintillation detectors. The ¹³N nucleus cannot be formed with proton on any boron isotope (A=10 or 11). A stack of BN targets was simultaneously irradiated, so the relative beam intensity was stable. Decay spectroscopy of 511 keV line (single and coincidence) was applied, allowing to disentangle β^+ decays of ¹³N and ¹¹C (produced in ¹⁴N(p, α) and ¹¹B(p,n) reactions) with relative intensities determined with 3% precision.