Spectroscopic Signatures of Non-Trivial Topology in Weyl Semimetals

Jakub Schusser^{1, a)}, Hendrik Bentmann¹, Maximilian Ünzelmann¹, Tim Figgemeier¹, Chul-Hee Min², Simon K. Moser³, Jennifer N. Neu⁴, Theo Siegrist^{4,5} and Friedrich Reinert¹

¹Experimentelle Physik VII and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg
²Department of Physics, Christian-Albrechts-Universität zu Kiel
³Experimentelle Physik IV and Würzburg-Dresden Cluster of Excellence ct.qmat, Universität Würzburg
⁴National High Magnetic Field Laboratory, Tallahassee, Florida
⁵Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Tallahassee, Florida

^{a)} Corresponding author: jakub.schusser@physik.uni-wuerzburg.de

Abstract. By performing angle-resolved photoemission spectroscopy (ARPES) on bulk samples we show the spectroscopic manifestation of topological features and Weyl physics beyond the simple photointensity over a broad range of excitation energies from the vacuum ultraviolet to the soft X-Ray regime and compare the surface to the bulk band structure. Our experimental observations were complemented by state-of-the-art first principle photoemission calculations based on one-step model of photoemission. The determinant criterion confirms the arc character of the spoon features in the constant energy contour close to Fermi level in non-centrosymmetric TaP. We further show the drawbacks of the existing spectroscopic techniques used to determine whether the given material has non-zero Chern number and discuss an improved approach for identifying Fermi arcs by the means of differential ARPES measurements as well as the proper final state description.