Band Dispersion within Pristine InBi Crystal

L. Nicolaïi 1 , a), J. Minár ${ }^{1}$, M. C. Richter ${ }^{2,3}$, O. Heckmann ${ }^{2,3}$, M. Fanciulli ${ }^{2,3}$, L. Nagi Reddy ${ }^{2,3}$, G. Bell ${ }^{4}$, R. Haria ${ }^{4}$, J.-M. Mariot ${ }^{5}$ and K. Hricovini ${ }^{2,3}$
1) University of West Bohemia, Univerzitní $8 / 2732,30100$ Plzeň, Czech Republic 2)Laboratoire de Physique des Matériaux et Surfaces, CY Cergy Paris Université, 95031 Cergy-Pontoise, France 3)Université Paris-Saclay, CEA, CNRS, LIDYL, 91191 Gif-sur-Yvette, France 4)Department of Physics, University of Warwick, Coventry, CV4 7AL, UK 5) LCPMR, CNRS, UMR7614, Sorbonne Université, 75252 Paris, France
${ }^{\text {a) }}$ Corresponding author: Inicolai@ntc.zcu.cz

Abstract

InBi has been theoretically analysed for many years as a semi-metal showing a stable phase within the PbO structure thanks to Spin-Orbit Coupling (SOC) forces [1,2,3]. Regrettably, this alloy system remains not well-known on the experimental side: reports of grown ordered crystals are rare [4,5]. We here present a thorough experimental and ab-initio theoretical analysis on $\operatorname{InBi}(001)$. The crystal was grown using the Bridgman-Stockbarger technique. InBi consists of In layers sandwiched between Bi monolayers, with weak Van-der-Waals bonds amid the resulting trilayers. The InBi crystal was cleaved in-situ in order to obtain a clean and flat surface suitable for angle-resolved photoemission (ARPES) measurements. The SPR-KKR package [6,7], based on the Dirac equation, which fundamentally includes relativistic effects, was used for the theoretical analysis and clearly underlines the influence of the surface termination.

[1] M. Ferhat and A. Zaoui, Physical Review B, 73:115107 (2006)
[2] A. Zaoui, D. Madouri, and M. Ferhat, Philosophical Magazine Letters, 89(12):807-813 (2009)
[3] H. Huang, J. Liu, and W. Duan, Physical Review B, 90:195105 (2014)
[4] L. Dominguez et al., Applied Physics Express, 6:112601 (2013)
[5] Ekahana et al., New Journal of Physics, 19, 065007 (2017)
[6] H. Ebert, D. Ködderitzsch, J. Minar, Rep. Prog. Phys. 74, 096501 (2011)
[7] J. Braun et al., Phys. Rev. B 88, 205409 (2013)

