Structural Investigation of Mechanically Alloyed Co-Fe-Ta-B-Mo Alloy

Maksym Lisnichuk^{1, 3, a)}, Vladimír Girman^{1, 3, b)}, Daria Yudina^{1, c)}, Andrej Baldovský^{1, d)}, Pavol Sovák^{1, e)} and Jozef Bednarčík^{1, 2, f)}

¹ Institute of Physics, Faculty of Science, P. J. Šafárik University in Košice, Park Angelinum 9, 041 54 Košice, Slovakia

² Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia ³ Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01, Kosice, Slovakia

^{a)} Corresponding author: maksym.lisnichuk@upjs.sk ^{b)} vladimir.girman@upjs.sk, ^{c)} daria.yudina@student.upjs.sk, ^{d)} andrej.baldovsky@student.upjs.sk, ^{e)} pavol.sovak@upjs.sk, ^{f)} jozef.bednarcik@upjs.sk

Abstract. Mechanical alloying (MA) is a very versatile process for preparation of various types of metastable and nanostructured materials. Recently we demonstrated that fully amorphous material can be prepared by wet mechanical alloying of Co-Fe-Ta-B powder mixture. The aim of this work is to investigate influence of small addition of Mo on structure of wet mechanically alloyed Co_{52.5}Fe₁₀Ta_{5.5}B₃₀Mo₂ (at. %). Changes in local atomic structure at various stages of milling were investigated by high-energy X-ray scattering (HEXS) using synchrotron radiation. Thermal stability and phase transformations were studied by means of high-temperature (up to 800 °C) in-situ HEXS experiments. Structural investigations confirmed that 100 hours of wet mechanical alloying in hexane results in formation of nanocomposite Co-Fe-Ta-B-Mo powder alloy characterized with presence of a small fraction of nanocrystalline phase/s evenly distributed within the major amorphous phase. High-temperature in-situ HEXS experiments provided valuable information about transition temperatures and phases which are formed during thermal loading.