Dependence of the 6H - SiC Induced Amorphization on the Ion Beam Implanted Fluence

Marko Erich^{1, a)}, Marko Gloginjić¹, Željko Mravik¹, Branislav Vrban², Štefan Čerba², Jakub Lüley², Vladimír Nečas², Vendula Filová³, Karel Katovský³, Ondrej Štastný³ and Srdjan Petrović¹

¹Laboratory of Physics, Vinča Institute of Nuclear Sciences – National Institute of the Republic of Serbia, University of Belgrade, 11351 Belgrade, Serbia

²Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava, 81219 Bratislava, Slovakia

³Department of Electrical Power Engineering, Brno University of Technology, 601 90 Brno, Czechia

a) Corresponding author: marko.erich@gmail.com

Abstract. 6H-SiC samples have been implanted by 4 MeV C and Si ions in the (0001) channeling direction to the sets of multiple implantation fluences. These samples were analyzed via Elastic Backscattering Spectroscopy in the channeling mode (EBS/C) using 1.725 MeV proton beam, from which SiC amorphization depth profiles and averaged integral 6H-SiC amorphization have been obtained. The averaged integral 6H-SiC crystal amorphization vs implanted fluence dependence has been determined for both types of implanted ions. From these dependences, the 6H-SiC integral crystal amorphization vs. implanted fluence/type of implanted atom assessment model have been proposed.