Atomic Models of ε_n Structural Variants - Overview

Ivona Černičková^{1, a)}, Marek Mihalkovič^{2, 3}, Libor Ďuriška¹, Peter Švec^{2, 3}, Peter Švec Sr.² and Jozef Janovec¹

¹Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava, J. Bottu 25, 917 24 Trnava, Slovak Republic

²Institute of Physics, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovak Republic ³Centre of Excellence for Advanced Materials Application, Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovak Republic

^{a)} Corresponding author: ivona.cernickova@stuba.sk

Abstract. The present work is focused on the overview of atomic models of ε_n decagonal quasi crystalline approximants in the Al-Pd-Co system. Atomic structural models of the structural variants ε_6 , ε_{16} , ε_{22} , ε_{28} and ε_{34} were created using abinitio calculations and/or Monte Carlo simulation. Atomic models were calculated based on the experimental results obtained by X-ray diffraction and scanning transmission electron microscopy. Good agreement was obtained between calculated and experimentally observed atomic structures of the ε_n phase. The calculated data for the structural variant ε_{28} are available in the appendix, as CIF file in text format.