Origin of the In-Gap States in the 3d Perovskite Oxide SrTiO₃ Doped with Ni

Fatima Alarab^{1, a)}, Karol Hricovini³, Christine Richter³, Jan Minar² and Vladimir N. Strocov¹

¹Swiss Light Source, Paul Scherrer Institut, 5400 Villigen, Switzerland ²New Technologies Research Centre, University of West Bohemia, 30614 Pilsen, Czech Republic ³CY Cergy Paris University, 95000 Neuville-sur-Oise, France

a) Corresponding author: fatima.alarab@psi.ch

Abstract. We present photoemission spectroscopy study on a series of high quality monocrystalline thin films of SrTiO₃ (100) doped with 6% and 12% of Ni, exhibiting potentially interesting properties for future solar cells [1]. We identify the role of correlations of the localized 3d in-gap states of Ni on the two-dimensional metallic state formed at the surface of SrTiO₃. Using the advantages of resonant angle-resolved photoelectron spectroscopy (RES-ARPES) [2] for the study of correlated systems, we could establish the elemental character and type of hybridizations of the valence band, in-gap states and Fermi states.

REFERENCES

- 1. F. Alarab *et al.*, Photoemission study of pristine and Ni-doped SrTiO3 thin films. Physical Review B 104, 165129 (2021).
- 2. Vladimir Strocov. Electron momentum calculations, 2017