On the Taylor Series Solution of the Reactor Point Kinetics Equations

Branislav Vrban^{1,a)}, Miroslava Dobroňová^{1,b)}, Jakub Lüley^{1,c)}, Štefan Čerba^{1,d)}, Filip Osuský^{1,e)} and Vladimír Nečas^{1,f)}

¹Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19 Bratislava, Slovakia.

^{a)}Corresponding author: branislav.vrban@stuba.sk

^{b)}miroslava.dobronova@stuba.sk, ^{c)}jakub.luley@stuba.sk, ^{d)}stefan.cerba@stuba.sk, ^{e)}filip.osusky@stuba.sk, ^{f)}vladimir.necas@stuba.sk

Abstract. A numerical solution of point reactor kinetics with multiple delayed neutron precursors groups is derived utilizing Taylor polynomials. This method is verified using step, ramp and sinusoidal reactivity inputs in C++ simulation compared to data available in literature. The effect of Taylor Remainder is studied and discussed. Impact of using a different Taylor Series order is observed. Limitations and possible improvements of this method are demonstrated.