The Study of 4H-SiC Alpha Particle Detectors with Different Schottky Contact Metallization

Bohumír Zaťko^{1, a)}, František Dubecký¹, Leszek Ryć², Andrea Šagátová^{3,4}, Katarína Sedlačková³, <u>Eva Kováčová¹, Vladimír Nečas³</u>

¹Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, SK-841 04 Bratislava, Slovakia
²Institute of Plasma Physics and Laser Microfusion, 00-908 Warsaw, Poland
³Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Ilkovičova 3, SK-812 19 Bratislava
⁴University Centre of Electron Accelerators, Slovak Medical University, Ku kyselke 497, SK-911 06 Trenčín, Slovakia

^{a)}Corresponding author: elekbzat@savba.sk

Abstract. We fabricated and characterized 4H-SiC Schottky diodes as a spectrometric detector of alpha particles. Two types of blocking contacts based on Ni/Au and Pt/Au were used. The total thickness of prepared blocking contacts was about 15 nm to minimize the influence on alpha particles energy resolution. Current-voltage characteristics of two types of detectors were measured at room temperature and compared. As a source of alpha particles we utilized triple radioisotope of ²³⁹Pu ²⁴¹Am ²⁴⁴Cm. Detected alpha particles had energies from 5.1 MeV up to 5.8 MeV. The spectrometric performance of detectors with two types of blocking contacts were evaluated and compared.