Fabrication of Field Emitters of Ultra-Nano-Crystalline and Micro-Crystalline Diamond Films by the MPECVD Method

Wen-Hsiu Cheng¹, Ping-Huan Tsai¹, Yi-Hung Chen¹, Hung-Yin Tsai^{1, a)} and Robert Andok²

¹ Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan
² Laboratory of E-Beam Lithography, Institute of Informatics, Slovak Academy of Sciences, Bratislava, Slovakia

^{a)} Corresponding author: hytsai@pme.nthu.edu.tw

Abstract. Synthesis of ultra-nano-crystalline and micro-crystalline composite diamond (UNCD/MCD) films and lateral emitters comprising UNCD/MCD were grown by using microwave plasma-enhanced chemical vapor deposition (MPECVD). The field emission properties of UNCD/MCD films and lateral emitter devices made by UNCD/MCD were investigated. The results showed the best field emission characteristics for the film using 1200 W and 130 torr to grow UNCD, and using 1200 W and 80 torr to grow MCD, respectively. The optimal parameters were chosen to fabricate the UNCD/MCD lateral emitter. Easy and convenient process was obtained to fabricate the lateral emitter device with the initial electric field of $46 \text{ V}.\mu\text{m}^{-1}$ and the maximum achieved current 39.5 μA (208.4 mA.cm⁻²).