Magnetic Properties of Multi-Layered Metallic Ribbons

Beata Butvinová^{1,a)}, Pavol Butvin^{1, b)}, Peter Švec Sr.^{1, c)}, Marek Kuzminski^{2, d)} and Igor Maťko^{1, e)}

¹Institute of Physics Slovak Academy of Sciences, Dúbravskácesta 9, 845 11 Bratislava, Slovakia^{a,b,c,e)} ²Institute of Physics Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland

^{a)}Corresponding author: beata.butvinova@savba.sk ^{b)}pavol.butvin@savba.sk, ^{c)}peter.svec@savba.sk, ^{d)}kuzmi@ifpan.edu.pl, ^{e)}igor.matko@savba.sk

Abstract. The method of planar flow casting has been used for preparation of single-, bi- and tri-layered ribbons of the two different or the same composition to attain multi-layered ribbons suitable for an application. Prepared bilayer was composed of positively and negatively magnetostrictive layers $Fe_{77.5}Si_{7.5}B_{15}/Co_{72.5}Si_{12.5}B_{15}$. Other aim was to suppress potentially undesired surface effects of differences between ribbon surfaces and volume. We prepared the ribbons with composition $Co_{47}Fe_{21}Mo_{6.5}B_{21}Si_{4.5}$ as single layer and trilayer with the thickness ratio more than 3:1. Structural, chemical and magnetic properties in amorphous (as-cast) and crystalline state were investigated. The composition was chosen to obtain low saturation magnetostriction. Nanocrystallization improved soft magnetic properties namely for trilayer. Work proved that reduction of large surface/volume ratio enables to reduce undesired effects of shrinking surfaces that squeeze the small volume of a single ribbon more efficiently.