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1. Introduction
Many of the proposed graphene-based devices utilise its unique electronic proper-

ties [1]. Recently graphene nanoribbons (GNRs) have been proposed to provide a functionality
analogous to optical fibres [2]. The operation of such device would be based on electronic
states localised closed to its edges. The electric current is expected to flow along the ribbon
edge analogously to light through a fibre. Since such a setup would require an electrical contact
of the GNR to the rest of the scheme, a natural question about electrical conductance proper-
ties of corner-contacted GNRs emerges. Similar contacts have been computationally studied in
Ref. [3] where the main focus have been non-rectangular graphene flakes with two electrodes
attached at it. Recently we turned our attention to (rectangular) GNRs with the aim to study
a setup with two constant electric currents flowing along the two parallel edges of a nanorib-
bon [4]. This led us to consider a 4-terminal device in the ballistic regime and explore its
properties with the aid of the Landauer-Büttiker (LB) multiterminal formalism. We proposed a
scheme with two classical electrical circuits characterised by their resistances and bias voltage
sources and coupled through the quantum device – the GNR-based nanojunction which is in
turn characterised by its conductance matrix. The studied model was a generalisation of the
Büttiker’s resistance-free model [5]. The currents in the two circuits were found to influence
each other in general. Such a coupling of the classical devices through a quantum one is cer-
tainly an intriguing phenomenon from the physical point of view. On the other hand, we studied
also the regime in which the currents in the two circuits can flow almost independently, i.e. mu-
tually almost decoupled. The weak mutual coupling would make possible to employ a single
nanoribbon to serve as two almost independent conductors. A scheme with such GNR-based
conductors might allow to shrink the size of a nano-electronic device using the conductors.
Whether the operation of the two circuits is sufficiently independent or not depends on the
conductance matrix of the nanojunction.

In this contribution we provide our preliminary computational results on the 4-point
conductance properties of GNR-based nanojunctions. We assume defect-free GNRs at zero or
low temperatures and study how their ballistic conductance depends on the GNR’s dimensions.
We note that in recent years advances in nanotechnology allowed to fabricate atomically precise
GNRs [6] so that defect-free GNRs are not merely an idealisation. Among our results we
determine an optimal GNR size which in the low temperature limit provides maximal values of
the computed four-point electrical conductance matrix elements.
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2. The studied model
We study several tens of graphene samples of the rectangular shape – the graphene

nanoribbons. A sample structure is shown on Fig. 1. For the purpose of the computational

Fig. 1: Illustration of a GNR with four electrical contacts. The dark-coloured corner areas
represent those atoms to which the electrodes are coupled. The numerical labels at the corners
define the indexing used in the formal description in formulae like (1). The size of the particular
sample on the figure along the armchair-edge direction LAC = 68 a ≈ 9.656 nm, where a ≈
0.142 nm is the nearest-neighbour distance in graphene. Similarly the size along the the zig-zag
direction LZZ = 20 b ≈ 4.919 nm with the lattice parameter b ≡ a

√
3. The total number of

atoms of the displayed sample is 1866.

model the electrodes (not shown in the figure) are composed of a bunch of semi-infinite mono-
atomically thin mutually non-interacting wires. Models of this kind were used and are described
also in Refs. [7, 3]. In the present work we employ 45 wires per electrode. The whole system
including the GNR and the electrodes is assumed at a negligible temperature. Its description
is necessarily quantum-mechanical and in our model it is based on the independent-electron
model and a tight-binding (TB) hamiltonian with extended couplings. One orbital per atom is
considered. The nearest-neighbour (NN) distance of the atoms in the GNR is a ≈ 0.142 nm.
The couplings of the atoms both in the GNR and in the wires are quantified by a TB hopping
parameter tB ≈ −2.97 eV. While the model based on the basic TB hamiltonian has proven
itself to be sufficiently accurate for many studies [1], we have found in our work [3] that it fails
to describe the conductance properties of GNR junctions if the corners serve as contact areas.
Therefore we include interactions up to the 3rd NN within the GNRs, with the two additional
parameters t′B = −0.073 eV and t′′B = −0.33 eV [8]. The interactions within the wires are
considered up to the 2nd NN using again the parameters tB and t′B. The interaction between
the GNR and the wires is described by the parameters tB and t′B as well. The conductance
matrix is calculated for the ballistic regime which is realistic at low temperatures. We use the
standard Green’s function formalism to obtain electronic wavefunctions [9] and consequently
the conductance matrix. Apart from the presently used extension (see Ref. [4] for its details) of
the TB model of the wires, the electronic structure and the conductance matrix calculations are
performed in the same way as in Ref. [3].

If the four terminals of the device are coupled to reservoirs of different electrochemical
(hence also electrostatic) potentials, an electric current is built up. We assume a linear-response
(low voltage) regime in which

Iα =
4∑

β=1
β 6=α

Gαβ . (Uα − Uβ) , α ∈ {1, . . . , 4} (1)
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is the current flowing through the electrode α [5]. Uγ are the electrostatic potentials of the four
electrodes and Gαβ are the conductance matrix elements, assumed to be energy-independent in
the linear regime. We assume zero magnetic field and neglect spin-related effects. The low-
voltage regime allows us to compute the conductance matrices at the equilibrium Fermi energy
only.

3. Results
The conductance matrix in general obeys to the time-reversal symmetry rule

∑
β Gαβ =∑

β Gβα For we assume zero magnetic field the matrix simplifies to a symmetric form [5]. In
addition, the geometrical symmetry of the rectangular GNRs such as the one shown in Fig. 1
yields the relations

G12 = G34 ≡ GAC , G13 = G24 ≡ GZZ , G14 = G23 ≡ GX (2)

The numerical indices correspond to the indexing of the four corners defined in Fig. 1. The
symbols GAC, GZZ and GX denote the conductances associated with the armchair (AC) direc-
tion, the zig-zag (ZZ) direction and the diagonal (X) directions. Under the assumed conditions
the ballistic conductance properties of a GNR are thus completely described by the three off-
diagonal elements of the matrix G We compute the conductance matrices for several tens of
GNRs differing by their sizes LAC and LZZ (see Fig. 1). We note that all of them have LZZ

sizes corresponding to conductive (or metallic) armchair GNRs [10]. First we show (Fig. 2)
how the conductance depends on the sample length along the AC direction. The striking feature

Fig. 2: The three different off-diagonal elements of the conductance matrix plotted as func-
tions of the GNR’s size (the length) LAC for the three different widths LZZ ∈ {44, 50, 56} b ≈
{10.82, 12.30, 13.77} nm; see the caption to Fig. 1 for information on the parameters a and b.
The legends related to the LZZ values apply to all three panes. (a), (b), (c): The conductances

associated with the AC, ZZ, and X directions, respectively, as defined by the Eq. (2).

is that all three matrix elements exhibit qualitatively similar dependence on LAC. At first sight
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this may be a counterintuitive result. The similar features can be comprehended as resulting
from the electronic structure of the nanojunction and from its symmetry. The spectrum of the
junction’s eigenstates yields similar probabilities for an electron to tunnel from a given terminal
to any of the remaining three terminals. A minor exception is the dip around LAC = 44 a which
is deeper for GAC than for the other two conductances.

In addition to the dip, the interesting feature are the peaks at about LAC = 68 a. It is
not surprising that short GNRs are characterised by the large conductances as it is seen from
the Fig. 2. Such short GNRs may not be practical for an experimental realisation. However
the single peak in all the plots mean that there is an optimal length (about 68 a) for a GNR to
provide maximum conductance. We have data available for even longer GNRs and they show
just very weakly varying, practically constant Gαβ matrix elements at larger GNRs’ lengths.

The results in Fig. 2 display a marginal dependence on the GNR’s size LZZ along the
ZZ direction. We performed a set of calculations for ribbons of the length LAC = 68 a, i.e. for
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Fig. 3: The three different off-diagonal elements of the conductance matrix plotted as functions
of the GNR’s size (the width) LZZ for GNRs of the length LAC = 68 a ≈ 9.656 nm; see the
caption to Fig. 1 for information on the parameters a and b. The other symbols are explained
in the caption to Fig. 2. The vertical dotted line marks the magnitude of LZZ corresponding to

a square-shaped GNR.

the length providing the peak of conductances. The Gαβ plots vs. the width LZZ are shown in
Fig. 3. Not surprisingly, the GZZ conductance becomes very high for the GNRs of the short
LZZ sizes. The coincidence of GAC with GX for samples narrow along the ZZ direction is also
intuitively clear. The same is true for the coincidence of GZZ with GX for wide samples.

While the conductances practically saturate at a non-vanishing value in the limit of
the large LAC size (Fig. 2), they monotonously decrease if the perpendicular size LZZ increases
(Fig. 3), an observation seen for the computed sizes up to 263 b (beyond the scale shown in
Fig. 3). Partially similar results are found also for Gαβ vs. LZZ computed for a longer set of
GNRs (LAC = 86 a, not shown in graphs). The LAC = 86 a structures do not yield the wide
local maxima in the Gαβ vs. LZZ plots. In overall, we can say that beyond the local maxima
the conductances get lower or saturate at a finite value as the number of the composing atoms
increases.
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4. Conclusion
In this computational work we studied the 4-point electrical conductanceGαβ of GNRs

contacted at their corners. The motivation of this work comes from considerations about GNR’s
edges functioning analogously to optical fibres [2]. Our recent work [3] was probably the first
one in which corners of graphene flakes were considered as contact areas. In the present contri-
bution we have extended these ideas to ordinary rectangular GNRs. We consider approximately
square (about 0.9×1 nm2) contacts. Our preliminary results in this contribution show that there
are optimal GNR dimensions such those yield maxima of the conductances. The optimal size is
about Lopt

AC ≈ 9.656 nm along the armchair direction and about Lopt
ZZ ≈ 12.3 nm along the zigzag

direction; the variation of Gαβ with the LZZ size is relatively weak. The conductance matrix
elements at larger LAC slowly decrease and saturate at a non-vanishing value. The dependence
on the LZZ size exhibits more differences between different matrix elements, with the common
feature that beyond Lopt

ZZ they all decrease for the studied range of the LZZ sizes. Among several
open questions, a comparison to the 2-point conductance as well as the effect of the contact size
areas may be addressed in a future work.
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[7] M. Konôpka, P. Bokes, Phys. Rev. B 89, 125424 (2014).
[8] S. Reich, J. Maultzsch, C. Thomsen, P. Ordejón, Phys. Rev. B 66, 035412 (2002).
[9] D.A. Ryndyk, B. Song, R. Gutiérrez, G. Cuniberti, Green Function Techniques in the

Treatment of Quantum Transport at the Molecular Scale, in Energy Transfer Dynamics
in Biomaterial Systems, edited by I. Burghardt, V. May, D.A. Micha, E. Bittner, Springer
Series in Chemical Physics Vol. 93 (Springer-Verlag, Berlin, Heidelberg, 2009), p. 213.

[10] Y.-W. Son, M.L. Cohen, S.G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
[11] W. Humphrey, A. Dalke, K. Schulten, J. Molec. Graphics 14, 33 (1996).

91


