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1. Introduction 

 

In this paper we theoretically study a system consisting of a quantum bit (qubit) coupled to 

a resonator in the limit of strong coupling and strong driving. This system can be described by a 

variety of theoretical approaches, however, only a few of them can be used in these limits. One such 

model is the adiabatic-impulse model [1], which is introduced here together with the obtained 

numerical results. Our approach was inspired by the experiment in [2], where a pattern similar to 

Landau-Zener-Stűckelberg interference was observed in a qubit-resonator system, leading to lasing 

in the resonator [3]. 

 Adiabatic-impulse model was previously successfully used to describe dynamics of a single 

qubit, where it naturally leads to Landau-Zener-Stűckelberg interference and Rabi-like oscillations 

of qubits state. However, it was shown that in this model, the qubit cannot reach population 

inversion necessary for lasing without coupling to the environment. Here we show that in the scope 

of the adiabatic-impulse model, multiphoton processes in the qubit-resonator system naturally lead 

to an increase in the resonator photon number and nonthermal photon number distribution. We 

extended our model by introducing decoherence via the quantum-jump method, also known as 

Monte-Carlo wavefunction method [4]. 

 

2. Qubit –resonator system 

 

 Qubit-resonator system can be physically implemented as a superconducting flux qubit 

coupled to a coplanar waveguide resonator through mutual inductance or via shared Josephson 

junction [5]. The system can be controlled in two ways: either by changing the external magnetic 

flux threading the loop of the qubit or by transmitting microwave signal trough the resonator. In our 

case we consider the qubit to be driven by strong harmonic modulation of the external flux while no 

signal is being sent through the resonator. Hamiltonian of this system can be written as  

 

 𝐻 = 𝐻𝑞𝑏 + 𝐻𝑟𝑒𝑠 + 𝐻int, (1) 

 𝐻𝑞𝑏 = −
1

2
 𝜀𝜎𝑧 + 𝛥𝜎𝑥 ,𝐻𝑟𝑒𝑠 =

1

2
𝜔𝑟𝑎

†𝑎,𝐻int = 𝑔𝑘 𝜎+𝑎𝑘 + 𝜎−𝑎†𝑘  , (2) 

 

where 𝐻𝑞𝑏 , 𝐻𝑟𝑒𝑠  and 𝐻int are the qubit, resonator and interaction Hamiltonian respectively. 

Operators 𝑎 and 𝑎†are creation and annihilation operators for a resonator, while 𝜎𝑧and 𝜎𝑥  are Pauli 

operators acting on the qubit and 𝜎± are qubit rising and lowering operators. Parameter 𝛥 is energy 

gap of the qubit at the degeneracy point and 𝜔𝑟  is frequency of the resonator. Parameter 𝜀 is directly 

proportional to the driving magnetic field, which in case of harmonic modulation leads to 
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 𝜀 = 𝜀0 + 𝐴𝑐𝑜𝑠 𝜔𝑡 . (3) 

   

The qubit-resonator coupling is considered to be small, 𝑔𝑘 ≪ 𝛥. The interaction Hamiltonian in this 

form is known as multiphoton Jaynes-Cummings Hamiltonian [6]. 

If we neglect H𝑖𝑛𝑡 , the Hamiltonian can be easily diagonalised for every 𝑡. Its eigenstates are 

denoted  |𝑒 𝑔 , 𝑛 , where 𝑒 𝑔 denotes the excited/ground state of the qubit and 𝑛is the number of 

photons in the resonator. The eigenenergies of these states are 𝐸𝑒 𝑔 ,𝑛 = ±
𝜔𝑞𝑏

2
+ 𝜔𝑟  

1

2
+ 𝑛 , where 

𝜔𝑞𝑏 =  𝛥2 + 𝜀2. States   |𝑒, 𝑛 and  |𝑔, 𝑛 + 𝑚 are degenerate at the points ±𝜀𝑚where the equation 

 𝛥2 + 𝜀𝑚
2 = 𝑚𝜔𝑟 , 𝑚 ∈ ℕis fulfilled. This equation has no solution for 𝑚𝜔𝑟 < 𝛥. For simplicity, 

we chose𝑘to be such, that 𝜔𝑟 > 𝛥 >  𝑘 − 1 𝜔𝑟 ,which is the lowest possible 𝑘 for which there is no 

coupling between states that are not degenerate for some 𝜀. 

The interaction term substantially changes the eigenstates at degeneracy points 𝜀𝑘only. 

There, the coupling will lift the degeneracy forming avoided energy crossings with the gap 

 

𝑔𝑘𝑛 = 2𝑔𝑘 
(𝑛+𝑘)!

𝑛!
 .      

(4) 

  

Therefore, there are two kinds of avoided crossings in this system, qubit and qubit-

resonatorcrossings. The qubit avoided crossings are at𝜀 = 0 between pairs of states  |𝑒, 𝑛 and  |𝑔, 𝑛  

and are caused by coupling −
1

2
𝛥𝜎𝑥between qubit states. Therefore, the energy gap for every such 

crossing is  Δ. The states  | 𝑒 𝑔 , 𝑛 are “adiabatic states” (eigenstates of the Hamiltonian with the 

coupling term −
1

2
𝛥𝜎𝑥 included). The qubit-resonator avoided crossingsare at 𝜀 = ±𝜀𝑘between pairs 

of states |  𝑒, 𝑛 and  |𝑔, 𝑛 + 𝑘  and are caused by coupling 𝐻int between the qubit and the resonator. 

The gaps 𝑔𝑘𝑛 of these anticrossings depend on the photon number𝑛. The states |  𝑒, 𝑛 and  |𝑔, 𝑛 +
𝑘 are “diabatic” (eigenstates of the Hamiltonian with the coupling term 𝐻int neglected). 

Distinction between diabatic and adiabatic states is important for finding the correct form of 

time evolution matrix for Landau-Zener transitions at the crossings. It is worth noting, that adiabatic 

and diabatic states are approximately equal (up to their phases) far from the crossings, where 

coupling is negligible. 

 

3. Adiabatic-impulse model 

 

 This model of time evolution of the system assumes that the evolution is adiabatic everywhere 

except close to avoided crossings, when instantaneous Landau-Zener transitions occur [1]. 

During the adiabatic evolution, the occupations of eigenstates stay constant and only their phases 

change. This evolution can be described by time evolution matrix of the form 

 

 𝑈 =   𝑒−𝑖  𝐸𝑞 ,𝑛 𝑑𝑡 |𝑞, 𝑛  𝑞, 𝑛 𝑞 ,𝑛 . (5) 

At avoided crossings, Landau-Zener transitions cause shifts in occupation probability of the levels 

as well as phase changes. For the qubit transitions at 𝜀 = 0 , the transition matrix has the form 

 
 

  𝑁 =  ± 𝑃 (   𝑒 , 𝑛  𝑔, 𝑛 −   𝑔, 𝑛  𝑒, 𝑛  +

+ 1 − 𝑃(𝑒−𝑖 Φ   𝑔 , 𝑛  𝑔, 𝑛 + 𝑒𝑖Φ  𝑒, 𝑛  𝑒, 𝑛   ,𝑛

 
 

(6) 

 𝛿 =
𝛥2

4|𝑣|
   , 

(7) 

 Φ =
π  

4
 + δ ln δ − 1 + argΓ 1 − iδ  , (8) 
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Here 𝑣 =  𝑑
𝑑𝑡

𝜀 
𝜀=0

 , 𝑃 is the so called Landau-Zener transition probability and 𝜙 is the Stokesphase 

obtained during the transition. The plus-minus sign depends on the sign of 𝑣, with + for 𝑣 > 0. 

During this transition, only the qubit’s state changes. 

 

For qubit-resonator transitions at 𝜀 = ±𝜀𝑘 , the transition matrix is 

 𝑁′ =  ± 1 − 𝑃𝑛
′  (𝑒±𝑖 𝜙𝑛

′   𝑒 , 𝑛  𝑔, 𝑛 + 𝑘 − 𝑒∓𝑖  𝜙𝑛
′
  𝑔, 𝑛 + 𝑘  𝑒, 𝑛  +

+ 𝑃𝑛
′ (|  𝑔, 𝑛 + 𝑘  𝑔, 𝑛 + 𝑘 +    𝑒, 𝑛  𝑒, 𝑛   .𝑛≥𝑘

 
(10) 

 

Here, 𝑣𝑛
′ =  𝑑

𝑑𝑡
 𝐸𝑔 ,𝑛+𝑘 − 𝐸𝑒 ,𝑛  

𝜀=±𝜀𝑘

is the slope of the energy difference between crossing states 

and 𝑃𝑛
′  and 𝜙𝑛

′  are obtained from equations(7)-(9) , with Δ replaced by 𝑔𝑘𝑛  for every 𝑛.The plus-

minus sign depends on the sign of 𝑣𝑛
′ , with + for 𝑣𝑛

′ > 0. During this transition, both state of the 

qubit and the photon number change. 

 

 Difference between matrices for qubit crossings and for qubit-resonator crossings is caused by 

distinction between diabatic and adiabatic states. It is worth noting that unlike in [1], the transition 

matrices in both diabatic and adiabatic basis depend on the direction of traversal, although for the 

single qubit case, derived results would be the same. 

The overall time evolution of the system is given by the product of time evolution matrices for 

adiabatic parts and Landau-Zener transitions: 

 

 𝜓 𝑡 =. . . 𝑁2𝑈2𝑁1𝑈1𝜓 0  
 

(11) 

 Visual representation of this model is very intuitive (Figure 1b).  The system follows the 

adiabatic energy levels during adiabatic evolution and jumps between them during LZ transitions 

with the probability 𝑃. Probability amplitude of the system being in a given state is at every time 

given as the sum of amplitudes for different paths that lead to this state. 

 

 

 

 

 𝑃 = e−2 π δ  . (9) 

Figure 1: a) Energy levels of the qubit resonator system in dependence on𝜺. Adiabatic-

impulse model predicts that while sweeping the 𝜺, occupation of the levels changes 

only at the avoided crossings, whose positions are marked by vertical dotted lines. This 

is depicted in b), where dashed lines represent energy levels of the system, while thick 

solid lines represent various paths the system may choose during first period of its 

evolution, if it started in the ground state. Landau-Zener transitions are depicted as 

double headed arrows. Amplitude of the system being in any given state is given as the 

sum of amplitudes for different paths leading there. 
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4. Quantum-jump method 

 

 This method was developed as a method to numerically solve the Lindblad master equation [4]. 

Within this approach, the system is always in pure state given by its wavefunction and decoherence 

takes the form of sudden jumps between the systems states. These jumps occur at random times and 

their frequency is given by decoherence rate. Therefore, between jumps, system evolves according 

to equation (11), with only small addition to adiabatic phases caused by nonhermitian correction to 

Hamiltonian, which accounts for null-measurement. Evolution is simulated multiple times by this 

algorithm, and the resulting density matrix is given by averaging over all trials. Decoherence 

processes that were included in our model are qubit relaxation and resonator relaxation (via 

radiation of the photon to the connected microwave transmission lines). In our simple model, the 

decoherence rates were constant in time, i.e. they did not depend on 𝜺. 

 

5. Numerical results 

 

 To obtain analytical results is difficult (although it can be done for a single qubit), but 

multiplication of matrices in equation (11) can be easily done numerically. In this paper, we present 

results for the following system parameters ∆ =  2𝜋 ∙ 12.2 GHz, 𝜔 =  2𝜋 ∙ 7.5 GHz, 𝜔𝑟  =  2𝜋 ∙
2.5 GHz and𝑔5 =  2𝜋 ∙ 0.05 GHz, which were inspired by experiment in [3]. In this computation, 

only 20 resonator levels were taken into account, since for higher number of resonator levels, the 

average photon number did not change significantly. When the decoherence was included, we used 

qubit relaxation rate Γ𝑞𝑏  =  2𝜋 ∙ 10−2𝐺𝐻𝑧 and resonator relaxation rate Γ𝑟  =  2𝜋 ∙ 2 ∙ 10−3𝐺𝐻𝑧. 

In fig.2a we can see the number of photons in the resonator averaged over 10000 driving 

periods in dependence on driving offset 𝜀0and amplitude 𝐴. We see that there are areas where 

number of photons in the resonator is increased.  As seen fig. 2b, photon number distribution in 

these areas is non-thermal even if a decoherence is included. 

 

 

 

 

Figure 2:a) Logarithm of average number of photons in the resonator in dependence on 

driving parameters. No decoherence was included. Areas with substantially higher 

average photon number form pattern similar, but different from Landau-Zener-

Stűckelberg interference pattern in a single qubit. In our range of parameters, the 

maximal average number of photons was 7.3 (white arrow). b) Probability distribution 

of photon number in maximum. In coherent case, system can only get to states with 

𝑛 = 𝑚𝑘 (𝑚 ∈ ℕ, 𝑘 = 5) photons. Inclusion of the relaxation (with other parameters 

unchanged) enabled the system to access other states. Relaxation thus paradoxically 

caused increase in average photon number to 8.6. 
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6. Conclusion 

  

 We developed a model describing a multilevel system of a qubit strongly coupled to a resonator 

under strong driving in the framework of Landau-Zener-Stűckelberg interference. Our model 

predicts non-thermal probability distribution of photon number in areas with high average photon 

number. The role of decoherence in the system is nontrivial. Higher decoherence of qubit leads to 

higher average photon numbers. This can be explained by the fact, that by radiating photon from the 

resonator, system can reach states outside of the set 𝑛 = 𝑚𝑘, 𝑚 ∈ ℕ, thus enabling more paths by 

which the system can ascend to the higher states. 
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