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1. Introduction 

 

Research and development of advanced nuclear reactors in Generation IV (GEN IV) 

are limited by the selection of proper construction materials. Suitable candidate materials are 

still under extensive investigation as their properties must be excellent to achieve a high level 

of reactor system safety. New austenitic steels and oxide dispersion strengthened (ODS) 

steels are appropriate materials for construction of pipelines, heat exchangers or reactor 

internal parts in GEN IV. These alloys have improved properties in compare to recently used 

AISI steels, but they have not yet been tested in real thermal and radiation conditions. 

Therefore, this study is focused on the investigation of their stability at high temperatures 

with emphasis on microstructural analyses, especially presence of vacancy defects. 

 

2. Experiment 

 

In this paper, four different steels are investigated: austenitic steel NF 709 

manufactured by NIPPON Steel in Japan [1], austenitic oxide dispersion strengthened steel 

ODS 316 formed at University Beijing (China) by strengthening of AISI 316 [2] and two 

ferritic ODS steels as commercial products of USA company INCO (MA 957 and tempered 

MA 956) [3]. The chemical composition of the studied steels is listed in Tab. 1. These kinds 

of materials demonstrate better mechanical, corrosion and thermal properties than AISI steels 

(reference materials) recently used in nuclear power plants [1-4]. The measured samples were 

prepared by common procedure used for positron annihilation spectroscopy [5].  

 

Tab. 1.  Chemical composition of austenitic steels (in % wt.). 

 

Steels C Mn Ni Mo Cr Ti Si Nb N Al Y2O3 

NF 709 0.03 0.92 25.34 1.40 22.22 0.05 0.38 0.24 0.17     

ODS 316 0.08 2.00 10.00 2.00 16.00 0.50 0.75   0.10   0.35 

MA 957 0.03 0.09 0.13 0.03 13.70 1.00 0.04     0.03 0.30 

MA 956 0.07 0.12 0.07 0.10 19.97 0.30 0.04 0.01 0.04 1.30 0.50 

AISI 316 - ref. 0.08 2.00 10.00   2.00 16.00   0.75 0.10 

AISI 316L - ref. 0.03 2.00 10.00   2.00 16.00   0.75 0.10 
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The investigated steels were loaded by a thermal treatment typical for the primary 

circuit of gas cooled GEN IV reactors, which was simulated in autoclave at 1000°C in inert 

argon atmosphere (99.996 %) for 24 hours. The thermal experiment was performed in 

autoclave owned by Slovak Academy of Science. The pressure during the annealing was  

8 MPa, which should have simulated the pressure in nuclear reactor of GEN IV.  

The samples were investigated by positron annihilation lifetime spectroscopy (PALS) 

sensitive to small vacancy defects and to their changes in size or concentration due to thermal 

strain. The PALS measurements were done in a fast-fast mode [6] with the FWHM parameter 

close to 190 ps. The variance of fit (reduced chi-square) achieved value in range of <1; 1.2>. 

The PALS can determine defect size and defect concentration in the investigated samples up 

to a depth of 120 μm.  

The annealed samples changed the colour of surface from glossy metallic into 

black/grey mat, which indicated a growth of a new layer. A scanning electron microscope 

JEOL JSM 7600F with an energy wave dispersive spectrometer (EDX) was used for 

observation of this layer in a cross-section view. For this purpose, the cross-section samples 

were prepared by polishing with Ar ions using the cross-section polisher device (JEOL SM-

9010). 

 

3. Results and Discussion 

 

The high temperature annealing of samples took a long time (24 hours), therefore we 

assumed that the structure can transform or thermal vacancies can appear during the 

treatment. Although the annealing was performed in very pure argon gas with negligible 

concentration of impurities, an influence of environment was observed. This was 

demonstrated by the growth of new surface layers tested later by SEM.  

The investigated steels were firstly observed by positrons in as-received state (after 

the process of production) and then after the annealing for the simulation of the thermal 

strain. The PALS spectra were evaluated by software LifeTime9 (LT9), where the positron 

data were decomposed into 2 components - lifetimes (LT) and their intensities (I). The 

shortest lifetime (LT1) represents positrons annihilated mostly in the defect-free bulk 

(theoretical value in iron 110 ps) or positrons affected by small defects. The second positron 

lifetime (LT2) characterizes the vacancy type defects and is dependent on the size of three 

dimensional vacancy clusters Vn consisting of n vacancies. Intensities (I1, I2) belonging to the 

individual lifetimes characterize percentage of positrons annihilated with that lifetime.  

In Fig. 1, LT1 of reference AISI samples goes around the value of pure iron. 

Austenitic steel NF 709 and tempered ODS steel MA 956 have reduced LT1 below bulk 

value. The ODS 316 and MA 957 demonstrated an existence of dislocations and mono-

vacancies [7], which have probably been annealed out in MA 956 during the process of 

tempering. LT1 stayed mostly constant for steels after the annealing; only AISI 316L and NF 

709 showed its small increase. The growth of LT1 for AISI 316L was into the area for bulk 

and dislocations, which indicated also accumulation of small defects due to the thermal 

strain.  
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Fig. 1:  Positron lifetimes: LT1 for defect-free bulk and small defects, LT2 for bigger vacancy 

defects. 

 

 
Fig. 2:  Intensity of positrons annihilated in defects proportional to defect concentration. 

 

LT2 of all investigated samples is proportional to defect size. As is visible from Fig. 1, 

the size of defects is mostly between three and four vacancies. Only NF 709 in as-received 

state contains di-vacancies and MA 957 five vacancy clusters. After the annealing, the defect 

size of reference samples stayed constant, four-vacancies in predominance, although their 

concentration significantly increased (See Fig. 2). The defects of NF 709 grew probably from 

di-vacancies to three-vacancies, but their concentration slightly decreased in consideration of 

I2 error bars. This could indicate that smaller defects were merged into bigger ones during the 
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annealing or new defects could have been joined to the existed ones. The defect size for all 

ODS steels – ODS 316, MA 956 and MA 957 even decreased from four-vacancies to three 

vacancies; resp. from five-vacancies to four-vacancies for MA 957. However, the 

concentration of these defects increased which indicates formation of new small defects or 

slight decomposition of bigger defects into smaller ones.  

From the results, we can see an existence of different types of behaviour, which can 

be typical for the individual group of steels – the ODS steels and classic austenitic AISI 

steels. Only the steel NF 709 differs, although it is austenitic steel. Its different behaviour is 

probably due to much higher content of chromium and mostly nickel can slightly shift it into 

nickel chromium-iron alloys. The process of quenching could affect the thermal response of 

this steel, too. 

SEM results (shown in Fig. 3) detected oxide layers on the surface of the annealed 

samples, although minimal oxygen content (< 4x10-3 %) was present in the autoclave during 

the experiment. This implies that a process of hot oxidation happened during the thermal 

treatment. The EDX chemical analyses proved a presence of chromium oxide layer with 

different thickness for all individual steels. In some samples (ODS 316 and both AISI steels), 

an additional layer of iron oxide was created on the chromium oxide surface. The MA 956 

sample was covered with homogeneous layer of aluminium oxide, on which very thin layer 

of chromium oxide was detected. It was caused probably by higher content of Al as well as it 

could be previously existed as passive layer there.  

The most rapid degradation of surface was found for the steel ODS 316. In case of 

this sample, the created iron oxide layer started to come off from the rest of the sample; 

therefore we can note that the manufacturing of this ODS steel was probably not optimal. By 

the comparison of the ferritic ODS steels, MA 957 has better disposition to growth the 

oxidation layer than MA 956 due to smaller content of chromium. MA 956 and NF 709 have 

the highest chromium content, therefore they resist to oxidation better than other studied 

materials.  

 

 

Fig. 3:  SEM images of investigated steels after annealing at 1000°C during 24 h in Ar 

atmosphere (cross-section view). 
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4. Conclusion 

 

In this paper, thermal stability at high temperatures for four Gen IV materials were 

studied and compared to classic AISI steels in term of vacancy defects. Although it was 

assumed that all these advanced steels should have had better thermal properties, ODS 316 

strengthened by ytria/ titanium particles demonstrated worse thermal resistance than its non-

ODS version - AISI 316. Also oxide layer and post thermal brittleness of ODS 316 were the 

most significant from all investigated steels (reference steels included). On the contrary, 

ferritic ODS steels indicated very good thermal stability; even they demonstrated annealing 

out of some vacancy defects due to the thermal strain. Therefore, their structure was probably 

additionally regenerated after the process of manufacture, which was mostly seen for MA 957 

without the previous tempering. The oxide layer was also sufficiently small and it is probably 

dependent on chromium content for these ferritic ODS steels. The chromium content also 

plays important role in the new austenitic steel NF 709 (together with high nickel content), 

which assigns very good oxidation and thermal resistance at temperature of 1000 °C, too.  
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