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1. Why should we want to create such a horror? 

Actinides are specific elements with valence f-orbital. That means electrons in their 

valence band behave differently from other commonly simulated elements. However, their 

application in science and industry is quite important. Due to radioactivity and rarity (which 

mean also high prize) of many of them simulations seem to be a good means to test whether 

the ideas of use of these rare earth elements are reasonable. 

In this work we would like to introduce our solution to the initial complex problem for 

anyone who wants to begin with ab initio simulations – creation of the potential. In the case 

of uranium there was a need to start (more or less) from scratch and design the potential of 

our own, because there is no suitable one in public repositories. 

This paper is organized as follows. In the Section 2 we briefly introduce basic 

theoretical concepts of ab initio methods and show two important kinds of potentials. Short 

view to theoretical background of projector augmented-wave method can be found in Section 

3. The implementation of this theory in ATOMPAW [1] is mentioned in Section 4. Section 5 

shows our methods of testing potentials. In Section 6 the results of tests are presented. Finally 

in Section 7 you can find the conclusion of our work. 

  

2. A short look to Latin dictionary: ab initio 

Let’s start from the beginning. In Latin ‘ab initio’ means ‘from the beginning’ but in 

our field it is often translated as ‘from the first principles’. The term stands for numerical 

methods that (ideally) do not use any parameters, because accurate description of elementary 

interactions (in the form of Schrödinger or Dirac equation) enables them to accurately predict 

macroscopic properties. In practice many approximations have to be introduced and the idea 

of zero parameters is somehow cloudy. However, with well-defined approximations and good 

set of settings this approach works interestingly well. 

The exhibition piece of ab initio approach is density-functional theory (DFT). It is 

based on an idea that ground energy of electronic system is a functional of electron density. 

That means when we know electron density we can compute all ground-state properties. The 

idea is great. There is only one problem – we have no idea how is the electron density 𝜌(𝑟) 

distributed.  

Here comes DFT which maps the ground state of interacting electron system into the 

ground state of non-interacting electron in the effective field. Then our problem with 𝜌(𝑟) is 

reduced to finding the effective field. At this moment an approximation comes to the scene. 

When the Schrödinger equation for the electron system is written  

the Hamiltonian can be divided into three parts 

 𝑯 𝚿 𝒓   = 𝑬𝚿 𝒓    (1) 

  𝑬 𝑲 + 𝑬 𝑪 + 𝑬 𝑿𝑪 𝚿 𝒓   = 𝑬𝚿 𝒓    (2) 
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where 𝐸 𝐾 stands for kinetic energy, 𝐸 𝐶 for Coulombic interaction and 𝐸 𝑋𝐶  is an exchange-

correlation energy operator. The exchange-correlation energy is the part for which the exact 

mathematical formulation is unknown. But for the last fifty years people tirelessly try to 

approximate it.  

One very successful approximation was proposed by Kohn and Sham [2]. They 

assumed 𝜌(𝑟) to be the local. That means the exchange-correlation energy in given point 

depends only on 𝜌(𝑟) in that same point. The name of this method is self-explaining – local 

density approximation (LDA). 

The natural next step from the local 𝜌(𝑟) is using gradient. In practice it is not that 

straightforward, but it is possible and now there are a few implementations of generalized 

gradient approximation (GGA). It works better than LDA especially if gradients of electron 

density are large (e.g. in cohesion energy calculations or in treating actinide compounds).  

Now we have all the operators in our Schrödinger equation and we would like to 

compute the ground-state energy. However, we still do not know electronic wave functions. 

To obtain them two branches of approaches have been developed: all-electron methods 

(LMTO, LAPW) and pseudopotential methods. The main difference between them is in 

treatment of core electrons. Pseudopotential methods work with frozen core – the electrons on 

inner shells (not valence) are treated together with the nucleus as an effective ion core. Only 

the valence electrons are treated self-consistently. To allow computationally affordable 

calculations the wave functions in the core region (near to frozen core) are approximated by 

smooth functions that can be represented in small basis. On the contrary all-electron methods 

treat all electrons self-consistently. The trick used there is to divide the elementary cell into 

two parts – so called muffin tins around atomic cores, where the electronic wave functions 

are atomic-like – and the interstitial region where the wave functions are represented by plane 

waves.  

We used projector augmented-wave method which combines both approaches. It uses 

frozen core but the valence electrons are treated differently inside the augmentation radius 

around cores and outside of it. 

 
3. Terrifying math behind the scene 

It is quite fascinating story to follow when you see how projector augmented-waves 

can be created. It was originally shown by Blöchl [3]. In the beginning we realize we need to 

transform real wave function in the basis of function we can easily represent (plane waves). 

Let’s start with physical wave function Ψn r  (In fact we use DFT, so Ψn r  is Kohn-Sham 

one electron wave function) which can be transformed by operator 𝒰  to auxiliary (pseudo) 

wave function Ψ n r . 

However, we would like to express physical wave function by pseudo wave function, so we 

need inverse transformation. 

Then the expression for total energy can be written as follows. 

Our task is to find such operator 𝒯  that the auxiliary wave functions are well behaved. 

  

 𝚿 𝐧 𝐫 = 𝓤 𝚿𝐧 𝐫   (3) 

 𝚿𝐧 𝐫 = 𝓤 −𝟏 𝚿 𝐧 𝐫 = 𝓣  𝚿 𝐧 𝐫  (4) 

 𝐄 = 𝐄 𝚿𝐧 𝐫  = 𝑬 𝓣  𝚿 𝐧 𝐫   (5) 
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As a consequence of this three requirements on the operator  𝒯  can be formulated: 

 the physical wave functions shall be transformed onto numerically convenient auxiliary 

wave functions 

 the operator shall be linear so the algebraic operations are valid 

 the operator shall be local so there is no interaction between different atomic sites in 

pseudo wave functions (𝑹 runs over each atomic site and 𝑺𝑹 is a local atom-centred 

contribution within one augmentation region) 

Now when we know what the operator 𝒯  should do we find its definition. At first we have to 

point out that each wave function can be expanded into partial waves. Then we have to define 

a complete set of initial and final states for the transformation. 

where |  𝜙𝑖  are final states – all-electron valence partial waves, which solve Schrödinger 

equation for all-electron atomic potential for a set of energies and |  𝜙 𝑖  are initial states – 

auxiliary partial waves which are pairwise identical with all-electron outside the 

augmentation radius 𝑟𝑐 . The index 𝑖 stands for different atomic sites 𝑅, quantum numbers 

connected to angular momentum (𝑙, 𝑚) and index 𝑛 to distinguish different partial waves 

concerning one orbital. 

After definition of initial and final states a closed expression for the transformation 

operator is found. It can be derived from the combination of Eq. 6 and Eq. 7. Let’s assume 

the situation in one augmentation region: 

In this case contribution 𝑆 to linear transformation is: 

Remember that the wave functions with tilde stand for auxiliary partial waves and these 

without tilde represent all-electron partial waves. Each wave function can be expanded into 

partial waves. Hence we can write: 

From Eq. 10 we see that coefficients 𝐜𝐢 must be the same for real and auxiliary waves. Since 

we require transformation 𝓣  to be linear 𝐜𝐢 can be expressed as scalar product of the pseudo 

wave function and some fixed function. These fixed functions are called projector functions 

𝑝 𝑖  and there are as many projectors as many partial waves. 

Projectors have to be localized within an augmentation region 

That means expansion of pseudo wave function in one augmentation region into projectors 

must be identical to that wave function. 

Analysis of Eq. 13 leads to another condition for the projector functions: 

 𝓣 = 𝟏 +  𝑺𝑹

𝑹

 (6) 

 ∀𝒊               𝝓𝒊 = 𝓣   𝝓 𝒊  (7) 

   𝝓𝒊 = |  𝝓 𝒊 + 𝑺𝑹𝒊
  𝝓 𝒊  (8) 

 𝑺𝑹𝒊
|  𝝓 𝒊 = |  𝝓𝒊 − |  𝝓 𝒊  (9) 

 𝜳𝒏 =  𝝓𝒊𝒄𝒊

𝒊

= 𝓣 𝜳 𝒏 = 𝓣  𝝓 𝒊𝒄𝒊

𝒊

=  𝒄𝒊𝓣 𝝓 𝒊

𝒊

=  𝝓𝒊𝒄𝒊

𝒊

 (10) 

 𝒄𝒊 =  𝒑 𝒊|𝜳   (11) 

  |  𝝓 𝒊  𝒑 𝒊
 |

𝒊

= 𝟏 (12) 

  |  𝝓 𝒊  𝒑 𝒊
 |  𝜳  

𝒊

= 𝜳  (13) 
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The reader interested in practical process of choosing projectors and partial waves can find 

more details in the original work of Blöchl [3]. The others can skip the details and move 

forward to the result. Linear transformation between auxiliary and physical wave function has 

been found. 

Using this transformation, physical wave function can be obtained from known projectors, 

partial waves around the atomic centres and the pseudo partial waves. 

Note that right-hand side of eq. 16 consists of three components. The first is the auxiliary 

wave function (expandable to plane waves) that is correct in the interstitial region. The 

second term is the sum of partial waves (solutions of Schrödinger equation for isolated atom) 

that is correct in the augmentation region around the atomic cores. The last term is the sum of 

pseudo partial waves (but on the radial grid) that must be subtracted inside the augmentation 

region to reach valid results. 

 

4. Getting mathematical golem into life 

Having the beautiful theoretical concept from the previous chapter in mind we move 

to implementation. The first thing to mention is the need for approximations. We required 

complete basis of plane waves, but they can be included only up to the specified cut-off. 

Another restriction is that number of partial waves (and also pseudo partial waves and 

projector functions) is finite. However these three types of functions can be matched, so for 

each partial wave there is one pseudo partial wave and one projector function. 

In fulfilling our task of creating the potential for Uranium we used tool ATOMPAW 

[1]. Valence configuration was used as follows (the same as Dorado [4] used): 6s
2
, 6p

6
, 6d

2
, 

5f
2
, 7s

0
. Two partial waves for each value of 𝑙 were used. Radius of the augmentation region 

was chosen to 2.5 a. u. considering many core electrons in uranium atom. Pseudo partial 

waves are created by RRKJ scheme [5]. They are constructed as a sum of two Bessel 

functions. Matching radius for 𝑠 orbital pseudo partial waves was chosen to value 2.0 a. u. 

 

 
Fig.1:  Here all (two) partial waves 𝝓, pseudo partial waves 𝝓  and projector functions 𝒑  for 

quantum number l=0 are shown. Note that pseudo partial wave is identical with partial wave 

outside the matching radius. Sharp peak of projectors at 2 a. u. is caused by difference 

between matching and augmentation radius. 

  𝒑 𝒊|𝝓 𝒋 = 𝜹𝒊𝒋 (14) 

 𝓣 = 𝟏 +   |  𝝓𝒊 − |  𝝓 𝒊  

𝒊

 𝒑 𝒊
 | (15) 

 |  𝚿 = |  𝚿  +   |  𝝓𝒊 − |  𝝓 𝒊  

𝒊

 𝒑 𝒊
 |  𝚿   (16) 
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5. Why do you think it is correct? 

Two potentials were constructed – one for LDA and the other for GGA 

approximation. Both were extensively tested on 𝛼-U lattice. Crystalline 𝛼-U is an 

orthorhombic structure with space group 𝐶𝑚𝑐𝑚. We introduce two types of tests we used: 

 Unit cell volume relaxation – lattice parameters are set free so that lattice can reach 

minimal total energy. 

 Computation of bulk modulus B0 – a few slightly non-ideal energetic states are computed 

by moving lattice parameters and simulating changes of volume – then Murnaghan fit is 

used to find bulk modulus. 

 

6. I believe the test results! 

Test results were compared with other calculations and also with experimental values. 

LDA is presently quite rarely used to describe actinides, so the data for it are not complete. 

 

Tab. 1.  Test results for 𝛼-U. 

 This work Previous calculations Experiment 

[6,7] LDA GGA LDA [6] GGA [6] 

a [Å] 2.81 2.94 2.76 2.84 2.85 

B0 [GPa] 154 113 182 143 107 

b/a 2.08 2.00 - 2.02 2.06 

c/a 1.76 1.75 - 1.74 1.73 

 

 

7. Conclusion 

According to principles presented in the first three sections we managed to make our 

own PAW potentials for uranium with acceptable test results. Numerical parameters in 

ATOMPAW were meticulously set and our potentials belong among the best in modelling 

bulk modulus of 𝛼-U. The further use of potentials is to compute positron lifetimes in UO2. 
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