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1. Introduction 

Traditional use of optical fibers for information signal transmission is now broadly 

widened by their applications in the space distributed sensing of many physical parameters 

[1], [2]. Due to the rather high sensitivity and space resolution of these sensors their 

importance is significant and the amount of investment into this field is growing rapidly 

worldwide [3]. At present many approaches to fiber optic (FO) sensors do exist. Special 

group of these sensors is based on optical fibres with the inscribed fiber Bragg gratings 

(FBG) especially with so called long-length FBG (L-FBG) (L100 mm) [4].  Usage of these 

sensors makes possible to get distribution of the measured quantity along the L-FBG with 

relatively high space resolution. One of the most significant applications of these sensors is 

e.g. in structural health monitoring (SHM) where local mechanical stress and tension are 

necessary to measure on-line. Reported spatial resolutions are in mm or sub mm range [5, 6].  

In this contribution we focus on the use of L-FBG sensors for the measurement of space 

distribution of physical quantities along the sensing optical fiber which is based on Optical 

Frequency Domain Reflectometry (OFDR). The main result is the description how to 

measure the space distribution of the reflection spectra along the sensing OF and their 

utilization for the measurement of an external physical quantity.  Finally a special case of the 

measurement of low induced birefringence in L-FBG optical fiber is described. 

 

2. Transmission matrix of the homogeneous Fiber Bragg Grating (FBG) section 

 

The most frequently used FBG are produced by exposing an optical fiber to ultraviolet light 

beam of sufficient intensity. From the point of view of mode propagation in the fiber core one 

can consider the FBG as the perturbation of the effective refractive index neff (z) 

characterised by the relation 

 

neff (z) = [neff (z)]av.{1 + .cos[(2/).z]}                                     (1) 

 

where [neff (z)]av is the constant averaged effective index value of one FBG period (DC index 

change),  is the designed FBG period and  is depth of the index modulation (visibility).  

This perturbation results in the mode coupling between all allowed modes in the fiber and 

principally influences the transmission and reflection spectra of the BG. If one considers an 

elementary single mode homogeneous FBG section of length z with the forward and 

backward propagating modes only the relation between the complex amplitudes of forward 

mode R(z) and backward one S(z) can be described by the matrix equation as follows: 

 

 
R(0)
S(0)

 = 𝑇BG  
R(z)
S(z)

                                                              (2) 

where 
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and                                                   
B

= √(κ2 − σ2).                                                            (4) 

 

σg is the „general self-coupling coefficient (DC- coupling coefficient)“  and κ is „alternating 

coupling (AC)  coefficient“. They are given by relations 

σg = (2/).[neff (neff)av – (π/Λ)]   and     κ = κ
*
 = (/)..[neff]av  .                    (5) 

λ is the optical radiation wavelength in free space and  neff  is the effective refractive index of 

the mode in the fiber core. 

The amplitude reflection coefficient of the FBG is defined as ρ= [S(0)/ R(0)]. Using (2), (3) 

and putting R(0)=1 and S(z)=0 the reflection coefficient can be expressed according to [7] 

as 

𝜌 =
𝑆(0)

𝑅(0)
= 𝑆(0)  =

𝑇21

𝑇11
=

−κ.sinh {  (κ2−σ𝑔
2 ) .z}

𝜎𝑔 .sinh {  (κ2−σ𝑔
2 ) .z}+𝑖.  (κ2−σ𝑔

2 ) .cosh {  (κ2−σ𝑔
2 ) .z} 

         (6) 

As a result for the evaluation of reflection spectra of the homogeneous elementary FBG 

section T
G
 matrix elements can be used.  

  

3. Long length fiber Bragg grating sensor system 

 

The basic idea of the FBG sensor consists in the interaction of FBG with the external physical 

quantity like strain, temperature, electric field and many others what results in the measurable 

change of the reflected spectrum from the FBG. To be able to evaluate quantitatively the 

measured quantity an appropriate model of that interaction is needed. 

One of the most important types for the use of the FBG for sensing purposes is the "L-

FBG" in combination with the "Optical Frequency-Domain Reflectometry" (OFDR). The 

basic principle of such sensing system can be explained using Fig. 1. The optical signal from 

the broad-band tuneable laser source TS is launched into 3dB optical fiber coupler C1 which 

equally splits the optical power into couplers C2 and C3. These are the inputs of two fiber 

interferometers – first consisting from the C2, mirrors M1, M2 and photodiode PD1 and the 

second one from C2, M3, L-FBG and photodiode PD2. Signals from the two optical fiber 

arms in the first interferometer terminated by the mirrors M1 and M2 interfere and the 

interference signal is detected by the photodiode PD1. The detected power is principally 

described by the relation 

IPD1 ~ cos(2neff LREF k)                                         (7) 

 

where LREF  represents the relative position of M1 to M2. This signal is changing periodically 

with the changing wave number k and its periodicity can be adjusted mainly by the choice of 

LREF. The period of the signal is given by 

k = /(neff LREF)                                                              (8) 
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Fig. 1 The simplified scheme of the L-FBG sensing system based on OFDR 
 

This signal is used for the equidistant sampling of the measured signal from the second FBG 

interferometer. It can be done by triggering the analog-to-digital convertor (ADC) in data 

acquisition device (DAQ).  

The second interferometer (the measuring one) is created by C3, M3, L-FBG and PD2. The 

whole sensing L- FBG is considered to consist from N partial L-FBG sections indexed by “i” 

= 1 to N. Each partial L-FBG section of the length Li is created by Mij series of further 

homogeneous elementary FBG-s with the length „ z” and the individual local grating 

parameters B, σg, κ as defined by (4-5). So the length of the particular L-FBG section is GLi 

= (Mij.z). Between particular L-FBG sections the pieces of "connecting single-mode fibers" 

of the length Li are placed. The transmission matrices of the elementary homogeneous FBG 

sections T
G
 are defined by (3) and the transmission matrix T

P
 of the inserted connecting piece 

that really represents the phase shift of the transmitted optical signal only is defined as 

follows. 

𝑇𝑖
𝑃 =  𝑒

−𝑗𝑛𝑒𝑓𝑓 𝐿𝑖𝑘 0
0 𝑒𝑗 𝑛𝑒𝑓𝑓 𝐿𝑖𝑘

                                              (9) 

The transmission matrix of the whole L-FBG can now be represented by a proper 

multiplication of all particular local matrices of the elementary homogeneous FBG-s T
G
 

indexed by “ij” and  

the matrices of “connecting sections” T
P
 indexed by “i” and potentially  located between the 

sections “i” as follows (see Fig. 2). 

𝑇𝐺 =  𝑇0
𝑃 .  𝑇1

𝑃 .  𝑇11
𝐺  .  𝑇12

𝐺  … .  𝑇1𝑀1
𝐺  .  𝑇2

𝑃 .  𝑇21
𝐺   𝑇22

𝐺  . …  𝑇2𝑀2
𝐺  .  𝑇3

𝑃  

… .  𝑇𝑁
𝑃 .  𝑇𝑁1

𝐺   𝑇𝑁2
𝐺  . …  𝑇𝑁(𝑀𝑁)

𝐺  .                                                                        (10) 

As it was stated in (6) having the coefficients T11 and T21 of the total reflection matrix (10) its 

total reflection spectrum can be calculated.  
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The resultant interference signal ID2 seen by the diode D2 is given by the sum of the signal 

SM3(0) reflected from the reference mirror M3 and the SBG(0) reflected from  the whole L-

FBG. It holds 

𝐼𝐷2 =  𝑆𝑀3 0 + 𝑆𝐵𝐺(0) 2                                              (11) 

where SM3(0) = exp[i(2neff.L0.k+)] and  neff is the effective refractive index of the fiber core, 

L0 is the distance given in the Fig. 2, k is the wave number in vacuum. Equation (11) 

indicates that total interference signal seen by D2 represents the sum of the reflecting spectra 

from the local homogeneous elementary FBG modulated by the corresponding beating 

frequencies defined by positions of the elementary sections with respect to the M3 position 

and the fiber effective index of refraction. It is necessary to remind that it is true if the 

reflectivity of each elementary FBG is less than approx. 10 % and the depth of the refractive 

index modulation in each elementary FBG is not greater than approx. 0,4 only [7,8]. Under 

these conditions the total signal at PD2 can be expressed as the sum of the particular 

modulated local reflection spectra Rij(k) 

𝑅𝐷2 =  𝑅𝑖𝑗  k . cos 2neff . zij . k =  𝑅𝑖𝑗  k . cos ωij . 𝑘 i,ji,j                      (12) 

Each component Rij (k) is modulated by harmonic beating signal of the frequency ωz that is 

unambiguously defined by the position of the particular elementary FBG as follows 

ωz = 2neff.z                                                               (13) 

Equation (12) is the crucial for the processing of the signal measured by the photodiode PD2. 

If one now applies the „Short Time Fourier Transform“ (STFT) procedure to the measured 

total spectrum RD2 and ωz=ωz1=2neff.z1 is constant he can obtain the reflection spectra 

corresponding to the location z=z1. In this way by repeating this procedure for all positions 

corresponding with all elementary FBGs one can get the complete information about all 

reflection spectra distributed along the L-FBG. 

 

4. L-FBG sensor for the measurement of low birefringence in optical fibers 

In the following let us consider a special case when we have the whole totally homogeneous 

L-FBG (e.g. we have only one section from the above L-FBG) and all elementary FBG 

sections with the length z are the same and some physical quantity like lateral stress is 

applied along the grating what results in the appearance of the homogeneous birefringence 

along the FBG. Let us consider two principal polarization modes – slow and fast with the 

corresponding effective refractive indices neffs, nefff - propagating in forward and backward 

direction in the L-FBG. As a result two reflection spectra appear. When the birefringence is 

significant then two different shifted reflection spectra can be easily observed. 

The difference between the reflection spectrum maxima wavelengths is given as fs = f -s 

= 2(neffs-nefff). Consequently by measurement of fs one can measure the local 

birefringence of optical fibre. However when the birefringence is rather small the both 

maximum wavelengths are very near each other and cannot be clearly distinguished. In this 

case the reliable measurement is not possible. Here another approach can be applied.  

As it follows from the equation for the resulting L-FBG spectrum (12), in a special case when 

the  

L-FBG is totally homogeneous and the low value birefringence is constant along the whole 

L-FBG the resulting spectrum can be described more simply as follows 

𝑅𝐷2 = 𝑅 k . cos(2 neff . 𝑧𝑗 . 𝑘) = 𝑅 k  cos(2 neff . 𝑧. 𝑘)𝑑𝑧 = 𝑅 k . 𝐶 k 
𝑧1

𝑧0
j         (14) 

The integral in the sum is denoted as C(k). The simplification consists in taking into account 

that reflection spectra of all elementary FBG are equal and therefore in the sum only the 

beating signals remained. Finally the summation can be replaced by the integration between 

the z0, z1 that is between the beginning and the end of the FBG.  
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Fig. 2 Example of L-FBG spectrogram for small birefringence, nsf = ns – nf = 0.00028  

 

Now the power profile of the signal on the PD2 can be expressed as the Fourier transform of 

the (14) as follows: 

𝐼𝐷2 =  𝐹{𝑅 𝑘 . 𝐶(𝑘)}(𝜔𝑧) =  𝐹{𝜔𝑧}                                          (15) 

As it is generally known the Fourier transform of the product of two functions can be equally 

replaced by the convolution of the corresponding Fourier transforms of these functions. So it 

holds 

𝐼𝐷2 =  𝐹 𝑅 𝑘   𝜔𝑧 ∗ 𝐹{𝐶(𝑘)}(𝜔𝑧)                                         (16) 

When the birefringence is taken into account then Bragg spectrum can be expressed as the 

sum of the spectra of the fast and slow mode respectively. So we can write 

Rb(k) = Rs(k) + Rf(k) = Rs(k-k0) + Rf(k)                                      (17) 

where the k0 is the maxima separation wavenumber between the fast and slow mode 

reflection spectra. It can be expressed as  

𝑘0 =
2

𝐵𝑓
−

2

𝐵𝑠
 .                                                        (18) 

Bf, Bs are the Bragg wavelengths of the fast and slow modes respectively. Implicitly we 

have considered that the amplitudes in the spectral maximum points of both modes are the 

same and also that no mode coupling between modes along the fiber does exist. The Fourier 

transform of the birefringent spectrum (17) can be written in the form 

𝐹 𝑅𝑏 𝑘   𝜔𝑧 = 𝐹 𝑅𝑠 𝑘 + 𝑅𝑠 𝑘 − 𝑘0   𝜔𝑧 =  1 − 𝑒−𝑗𝜔𝑧𝑘0 𝐹{𝑅𝑠 𝑘 }(𝜔𝑧)     (19) 

Now the power profile ID2 can be expressed as follows 

  1 − 𝑒−𝑗𝜔𝑧𝑘0 𝐹 𝑅𝑠 𝑘   𝜔𝑧 ∗ 𝐹{𝐶 𝑘 }(𝜔𝑧) .                                      (20) 

Except others this signal contains also the term given by absolute value of the convolution  

⃓ exp(-jωzk0) * F C k   ωz  .⃓ It results in the beating of the power profile which can be 

expressed as a function of "z" coordinate as follows 

𝐼𝐷2−𝑏𝑒𝑎𝑡𝑖𝑛𝑔 =  
1

𝑘0
 [1 − cos⁡{⁡2𝑛𝑒𝑓𝑓 (𝑧 − 𝑧0)𝑘0} ]0.5     .                                 (21) 

Using (21) we can conclude - the beating component of the signal oscillates linearly with the 

position z and the oscillation period z is inversely proportional to k0. It holds 

𝑧 =


𝑛𝑒𝑓𝑓 𝑘0
                                                                      (27) 

So in such a way by measurement of oscillation period z one can evaluate the separation of 

the Bragg gratings maxima k0 of the fast and slow modes respectively and consequently also 

the low birefringence of the fiber. An example of the simulation of low birefringence 

spectrogram of L-FBG using the model described above is given in the Fig. 2 . The beating 
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period is approx. 1.8 mm and the corresponding birefringence is neff-sf = neff-s-neff-f = 

0.000277. 

 

5. Conclusion 

The L-FBG based optical fiber sensor is an efficient tool for the measurement of the space 

distribution of several physical quantities. Some of them can be transformed into the induced 

birefringence in the optical fiber with the inscribed L-FBG. This can be identified by the 

measurement of the corresponding changes in the L-FBG reflection spectra. There exist 

direct relation between the maximum wavelength shift in the reflection spectra of the L-FBG 

and the induced birefringence. The reflection spectra changes can be extracted by the OTDR 

signal processing using STFT approach.  However for rather small birefringence values there 

is a problem with the identification of the maximum shift in the reflection spectra which is 

very small and difficult to evaluate. The solution in this situation is the measurement of the 

power reflection spectra oscillation period along the grating. It was shown that the cycling 

period is unambiguously coupled with the induced birefringence in the fiber.  
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