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1. Introduction
Extensive research of graphene was initiated by its unique electronic properties [1] and

at the same time by the possibility to prepare graphene samples in laboratories [2]. The dc elec-
tronic transport (ET) in ideal graphene and graphene nano-ribbons (GNRs) is of fundamental
interest. At energies not too far from the Fermi level, the transport is governed by electrons
exhibiting linear dispersion relation which formally bestows them dynamical properties of neu-
trinos or ultra-relativistic electrons. From band-structure point of view graphene is a zero-gap
semiconductor with fully occupied valence band and empty conduction band under charge neu-
trality conditions. The chemical potential can be altered by a gate voltage and the electronic
transport can be studied at its different levels. Intuitively, one might expect zero conductivity at
Fermi level. In the experiment by Novoselov, Geim et al. [3] the conductivity of graphene was
measured as a function of the gate voltage, σ(Vg). It has been found that although the function
takes a minimum at zero gate, its value there is non-vanishing, being around σmin ≈ e2/h. This
is the so-called minimal conductivity of graphene. Later Katsnelson [4] and Tworzydło et al. [5]
calculated its theoretical value σ = σmin = (4/π) (e2/h).

Closely related, the other striking feature of ET in graphene is the classical scaling of
its conductance (G = σW/L) at the neutrality point (zero gate voltage) even in the purely bal-
listic regime in perfect graphene sheets at low temperatures. This scaling assumes sufficiently
wide samples in comparison to their lengths.

Generally, the finite spatial dimensions of GNRs and consequently the boundary con-
ditions must be taken into account in determination of their conductivity. It is known that
(ideal) armchair GNRs (AGNRs) can either be metallic or semi-conductive, depending on their
width [6, 7]. The zig-zag GNRs are always metallic thanks to their support of special localised
states at their edges [6]. Because of the finite size, the conductance in general depends also on
the GNR’s dimensions L and W . This dependence is non-trivial. It was partially addressed in
several works in the past using the Dirac-Weyl model of electrons, see Refs. [4, 5, 8] and it was
recently discussed also in our work [9] in order to cover also the range of very narrow and gener-
ally very small armchair ribbons for which analytical theories employing the Dirac-Weyl model
are not applicable. Briefly, the important findings concerning perfectly connected1 AGNRs are
as follows: (i) The ballistic dc conductance G is generally a function of the single variable
W/L (as in the classical case) and it is generally a non-linear function of the aspect ratio (as
opposed to the classical conductance). It may be surprising that this scaling of the conductance
is very accurately preserved also for AGNRs as narrow as two carbon rings and/or similarly
short. Hence it is sufficient to consider G = G(W/L) and not G(W,L). (ii) For wide-short

1The enumerated conductance properties hold if the AGNR is fully coupled to the electrodes, i.e. tGE = tB;
see below in the text. The electrodes are assumed to be either (semi-infinite) graphene strips or the collections of
mono-atomic wires (the model considered in this work).
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GNRs (W/L & 4) the conductivity acquires the universal2 value of σmin (see above). Hence in
this Ohmic-like scaling regime it is more practical to use conductivity, rather than the conduc-
tance, to describe the ET. (iii) For long-narrow AGNRs (W/L . 1) it is the conductance which
acquires a constant value of the order G0 = 2e2/h. In other words, this value is (with very good
accuracy) the same for any metallic AGNR satisfying the W/L . 1 condition. Conductivity
computed as σ = G0L/W would of course be dependent on the aspect ratio which is not the
case of classical transport. The value of G0 represents the widely known single conductance
quantum (with the factor of 2 coming from the spin degeneracy). The three important char-
acteristics are graphically represented in Fig. 1. Technical details will be explained in Sec. 2.
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Fig. 1: Linear conductances of 37 different AGNRs plotted against the AGNRs aspect ratio. The
coupling parameter tGE between the AGNRs and the electrodes for this figure is always equal
to the bulk coupling parameter tB. The AGNRs have four different lengths L shown in legends.
(See also Fig. 2.) For the length L = 4a we consider AGNRs of 5 different widths W . Similarly,
for L = 7a there are data for 9 widths, for L = 11a we have 8 widths and finally for the longest
AGNR (L = 31a) we consider 15 different widths. See main text in Secs. 2 and 3 for more

details.

In this contribution we analyse the ballistic conductance scaling with respect to the
AGNR length and width for the case when the AGNR is partially isolated form the electrodes
via symmetric tunnelling barriers. We have already discussed that the universal G(W/L) de-
pendence becomes lost in this case [9]. It is the purpose of the present contribution to analyse
the conductance scaling properties for several different values of the tunnelling barrier and to
arrive at conclusions.

2. Description of the studied model
We consider rectangular graphene flakes – nano-ribbons – without any imperfection.

One such structure is shown on Fig. 2. The current is assumed to flow in parallel with the
armchair edges, hence the name armchair nano-ribbon. This AGNR as well as all other ones
considered in this work have the number of dimer lines [6] expressible as 3p − 1 with p being
a whole number. (p = 10 for the structure on the figure). This implies the metallic type of
AGNR. The shape and symmetry of the other structures considered here is also the same as that

2“Universal” is understood here as independent on both W and L or any other parameters.
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Fig. 2: One of the considered AGNRs. The dark-coloured strips on the margins represent
those atoms to which the electrodes are coupled. The width of the AGNR is W = 14 b, with
b ≡ a

√
3 and a ≈ 1.42 Å being the nearest-neighbour distance in graphene. The total length

is Ltot = 35a. The effective length L (which is more important in the present context) is the
distance along which the bias voltage is applied and it is L = Ltot − 4a. The model on the

figure contains 696 atoms in total.

of Fig. 2. They differ by their lengths L and widths W only. The total number of the considered
AGNRs is 37. They are of four different lengths: 4a, 7a, 10a, and 31a. For each length we
consider several different widths W such that we cover a wide range of the aspect ratios W/L,
both very small and also the cases W/L > 1.

Because we consider ET, we have to include electrodes into the total system. The
electrodes are modelled here by a set of independent mono-atomic tight-binding wires (chains)
which are bonded to the AGNR. The dark colour at the margins of the AGNR on Fig. 2 marks
those atoms which are (directly) coupled to the electrodes. The electrons flow from the left
electrode to the right one. The described model of the electrodes was used also in Ref. [9]. The
inter-atomic separation a between the atoms of the chains is chosen to be the same as in the
GNR.

We use the nearest-neighbour tight-binding (TB) description of the whole system with
the hopping parameter tB < 0, magnitude of which serves as the energy unit in the present study.
The electrons are described in the independent-particle approximation. There is one explicitly
considered electron (the 2pz one) per each carbon atom. Such approximation assumes that in
real structures the carbon atoms at the edges would have hydrogens attached to saturate the
bonds. Although this description is a very basic one, it has proven itself to be surprisingly
accurate in the case of graphene.

The TB Hamiltonian for our model is of the standard kind and it has been explicitly
introduced in Ref. [9]. We consider only stationary situation (time-independent bias voltage
and currents) in the present work. Our focus here is the linear conductance of the AGNRs. We
found practical to determine it directly from the formula G = limU→0 I/U in which we use a
very small bias voltage U � |tB| and calculate corresponding current I through the system.
The stationary currents are obtained from the eigenstate analysis performed using the Green
function method [10] in the same way as it was done in Ref. [9].
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3. Main results
In Fig. 1 we have reviewed the linear conductances for all of the studied AGNRs in case

when the electrodes-AGNR coupling have the full magnitude: tGE = tB. The conductances are
plotted as functions of the aspect ratio W/L. As can be seen, all computed values lie (with a
high accuracy) on a single curve which demonstrates thatG is a unique function ofW/L as said
in the introduction. This was a known fact mentioned in a few papers at least for medium-size
and larger GNRs [4, 5, 8] although its explicit demonstration covering also very small graphene
ribbons was likely missing in the literature until our recent work [9].

We next present the results for the partially decreased GNR-electrodes couplings tGE.
The results are shown on Fig. 3 and they have been computed for the same set of AGNRs
as used for Fig. 1. They clearly demonstrate that for the reduced coupling the conductance
ceases to be a unique function of the aspect ratio only. For a single value of W/L we can
have several values of G (belonging to several AGNRs differing by their sizes). Hence for this
more general case, G at given value of tGE must be considered as a function of two variables:
G(W,L). Another interesting observation acquired by inspection of results in Figs. 1 and 3 is

Fig. 3: Linear conductances of the 37 different AGNRs plotted against the AGNRs aspect ratio.
The difference compared to Fig. 1 is that now we consider reduced values of coupling parameter
tGE between the AGNRs and the electrodes. They are shown in legends. Otherwise the AGNRs
and the colour coding are the same as considered for Fig. 1. The plotted data are strictly
functions of the discrete variable W/L. The solid lines used to connect the discrete symbols are

just guides for an eye.

that G for given nano-ribbon may not be a monotonously increasing function of the coupling
parameter tGE. For example, the blue plot (represented by the small circles and corresponding
to the L = 31a cases) on Fig. 3(d) for W/L ≈ 1.45 exhibits larger G values than any of
the remaining plots for this length, despite the stronger values of tGE, including the plot in
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Fig. 1 with the maximum considered coupling. This counter-intuitive behaviour is caused by the
reduced impact of the electrodes on the electronic structure inside the nano-ribbons. The partial
isolation of the AGNR from its environment causes that environment-induced level shifts and
broadenings are partially removed. If there is an electron to be transmitted via such resonant
state the resulting transmission amplitude may be increased despite of the smaller tunnelling
probability from the electrode to the ribbon.

4. Conclusion
We have performed computational analysis of the conductance scaling of armchair

graphene nano-ribbons (AGNRs) with respect to the dimensions of the AGNR for partially iso-
lated AGNR. We have considered AGNRs of the metallic type and the linear conductance at
zero gate voltage (the charge neutrality point). While it is known that for such perfectly con-
nected AGNRs the conductance at the neutrality point scales as a unique function of the aspect
ratio, G = G(W/L), this is not true if there is a tunnelling barrier between the AGNR and the
electrodes. Our tight-binding calculations provided quantitative answers for this prototypical
situation. The particularly interesting finding is that even in cases of the partial isolation the
conductance is still a unique function of W/L for sufficiently narrow AGNRs (W/L . 1). An-
other observation is that even a significant partial isolation may, counter-intuitively, increase the
conductance.
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[9] M. Konôpka and P. Bokes, Phys. Rev. B 89, 125424 (2014).

[10] D.A. Ryndyk, B. Song, R. Gutiérrez, and G. Cuniberti, Green Function Techniques in the
Treatment of Quantum Transport at the Molecular Scale, in Energy Transfer Dynamics in
Biomaterial Systems, edited by I. Burghardt, V. May, D.A. Micha, and E. Bittner, Springer
Series in Chemical Physics Vol. 93 (Springer-Verlag, Berlin, Heidelberg, 2009), p. 213.

66


