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1. Introduction 

Due to the complexity of Boltzmann transport equation, for the computational 

modelling there is a need to simplify operators in the equation. One well known approximation 

is diffusion theory, which is often used for numerical calculations. This approximation 

describes the migration of neutrons in space. It also eliminates few challenging variables, such 

as neutrons angular distribution and in our case energy variability (only two energy groups of 

neutrons are considered). This simplification has also its limitations and the diffusion theory is 

applicable in the environment without large local absorbers [1]. The limitations are: 

environment is homogeneous, steady state type of analysis (∂φ/∂t = 0), neutron scattering is 

isotropic. The influence of heterogeneousness is decreasing with larger migration area of 

neutrons and therefore the diffusion theory can be used instead of transport theory specially in 

fast reactor systems. 

 

2. Numerical approximation 

For the purpose of calculation we have developed whole code in C++. This code solves 

the neutron diffusion equation Eq.(1) [1]. 

where g represents the group. The first term represents the leakage, the second term represents 

absorptions, third represents disappearances from the group by transfer to another group (h), 

fourth represents contributions by transfer from another group and last term represents 

contribution of fission reaction to specified energy group (χg is the proportion of neutrons 

emitted by fission in group g, ν is average number of neutrons produced after fission). The 

program solves Eigenvalue problem Eq.(2) by the use of iterative Power method described in 

Eq.(3) [2]. 

where k is the largest Eigenvalue corresponding to φ - fundamental eigen vector. 

Scaling is needed when k ≠ 1. Infinity norm scaling is used in this program Eq.(4). 

where δl is scaling factor and it is inverted maximum value of fundamental eigen vector. 

Convergence can be shown for random vector, that is not equal to zero Eq.(5). 
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where ui is the ith normalized eigen vector of matrix A and is corresponding to ki (harmonics of 

eigenvalue). Then Eq.(3) can be written as Eq.(6) [2]. 

The terms ki/kl in in Eq.(7) are negligible (for i > 1) after enough multiplications steps (l) and 

the obtained result consists of fundamental eigenvalue with corresponding eigen vector. 

The Box Scheme was used for discretization of examined area (Fig. 1). 

 

 
Fig.1:  Description of Box Scheme variables 

 

Therefore the equation Eq.(1) can be written as Eq.(8) for two groups of neutrons. 

where Σr represents the removal macroscopic cross section, hk the length of interval, λ 

fundamental eigenvalue, χg the proportion of neutrons emitted by fission in group g, Σf the 

fission macroscopic cross section, Σs the scattering macroscopic cross section between energy 

groups of neutrons and D
~  coupling coefficient. Removal macroscopic cross section consist of 

absorption macroscopic cross section and scattering macroscopic cross section into another 

group Eq.(9). And coupling coefficient is shown in Eq.(10) [2]. 

where Σa represents the absorption macroscopic cross section. 

where D represents diffusion coefficient. 
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3. Material analysis 

It is necessary to note that this is only theoretical approximation and that is mainly 

because the values of macroscopic scattering cross section were simplified with certain degree 

of uncertainty. Geometry is also simplified into one dimension and some dimensions are 

changed for faster convergence of numerical calculation (Fig. 2.). 

 

 
Fig.2:  Geometry 

 

where material A represents UO2 with enrichment 5% (dimension d1 is 7 mm and is same for 

every material A and B), B is UO2 with enrichment 4.4% and with 3.35% of 153Gd, C is B4C 

(dimension d5 is 142 mm), R stands for H2O (dimension d2 is 5 mm, d3 19 mm, d4 10 mm). 

D is mixture of whole area between x – y points (d5 is 142 mm). 

All cross sections are obtained from ENDF/B-VII.0 library for temperature 300 K and 

for the energies 0.0253 eV and 2 MeV [3] (see Tab. 1. and Tab. 2.). 

 

Tab. 1.  Material properties for neutron energy 0.0253 eV. 

  UO2(5%) UO2Gd(4.4%) H2O B4C Mixture 

Σa [cm-1] 0.00236 0.258839024 0.02198 0.04003 0.03868 

νΣf [cm-1] 0.00927 0.008448208 0 0 0.00406 

D [cm] 19.46342 1.221024339 0.15510 0.00109 0.27279 

 

Tab. 2.  Material properties for neutron energy 2 MeV. 

  UO2(5%) UO2Gd(4.4%) H2O B4C Mixture 

Σa [cm-1] 1.52E-05 1.69699E-05 2.4E-06 1.3E-07 8.3E-06 

νΣf [cm-1] 0.000179 0.000178005 0 0 8E-05 

D [cm] 101.9692 99.67455265 1.37155 1.53263 2.45256 

 

One possible way for the calculation of diffusion coefficient is the undermentioned 

equation Eq.(11) [4]. This is applicable if isotropic scattering is used. 

where Σt stands for the total macroscopic cross section and 0  unsymmetrical parameter of 

neutron scattering (if isotropic scattering is applied 0  = 0) [4]. 

In this case the molecular cross section of H2O is not considered, even if the molecular cross 

section is higher than calculated cross sections of particular nuclides [4]. The proportional 

distribution of neutron flux is shown in the Fig. 3. a). B4C is located on the left part of Fig. 3. a) 

and B4C is good absorber (area until x = 142 mm). The neutron flux decreases almost to the 

zero in this area. The H2O is good reflector and also good moderator, so the main increases or 

decreases of neutron flux are located in the H2O part of nuclear system for both neutron energy 

groups. Because the UO2 fuel has small macroscopic scattering cross section and big diffusion 

coefficient in comparison with H2O for both fuel types, it seems that the neutron flux is constant 

  tsttr

trD









3

1

3

1

3

1

3

1

0
  (11) 



 

323 

 

within the fuel (there are only small changes in distribution of neutron flux within the fuel). 

Steady decrease of neutron flux is located within uniform mixture. This is caused by the 

uniformity of the mixture and by the zero incoming boundary condition which assumes vacuum 

environment behind the boundary (neutrons are not scattered back to the fuel when they cross 

boundary with vacuum). The power generation is affected mainly by thermal neutrons (Fig. 3. 

b)). This is caused by macroscopic fission cross section which reaches the biggest value for 

neutrons with thermal energy in the feasible material. This nuclear system is subcritical with 

keff = 0.2863. 

 

 
 

Fig.3:  a) Proportional distribution of neutron flux, b) Proportional distribution of power 

generation 

 

 

4. Conclusion 

Diffusion theory is very suitable for fast calculations and it is used during development of 

theoretical reactor design. The successful application of program code was demonstrated. It 

has also its limitations but it provides relevant information when these limitations are taken 

into account by researcher. Development of such program codes helps to increase knowledge 

level and it directly influences nuclear safety. It also allows solving specific issues which are 

irresolvable by commercial codes. In the future, we have a plan to enlarge geometry into 2 

dimensions. 
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