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1. Introduction 

One important goal of mechanics of heterogeneous materials is a derivation their effective 

properties from the knowledge of the constitutive laws and complex micro-structural 

behaviour of their components. Microscopic modelling expresses the relation between the 

characteristics of the components of the composite and the average (effective) properties of 

the composite. In case of the Functionally Graded Material (FGM) it is the relation between 

the characteristics of the components and the effective properties of the FGM. 

The methods based on the homogenization theory (e.g. the mixture rules [1], [2]; self-

consistent methods [3]) have been designed and successfully applied to determine the 

effective material properties of heterogeneous materials from the corresponding material 

behaviour of the constituents (and of the interfaces between them) and from the geometrical 

arrangement of the phases. In this context, the microstructure of the material under 

consideration is basically taken into account by representative volume element (RVE). 

Mixture rules are one of the methods for micromechanical modelling of heterogeneous 

materials. Extended mixture rules [4] are based on the assumption that the constituents 

volume fractions (formally denoted as fibres – f and matrix – m) continuously vary as the 

polynomial functions:  zyxv f ,,  and  zyxvm ,. . The condition     1,,,,  zyxvzyxv mf  

must be fulfilled. Appropriated material property distribution in the real FGM is then 

         zyxpzyxvzyxpzyxvzyxp mmff ,,,,,,,,,,     (1) 

Here,  zyxp f ,, and  zyxpm ,,  are the spatial variations of material properties of the FGM – 

constituents. The extended mixture rule (1) can be analogically used also for FGM material 

made of more than two constituents. The assumption of the polynomial variation of the 

constituent’s volume fractions and material properties enables an easier establishing of the 

main appropriated field equations and allows the modelling of many common realizable 

variations.  

In the literature and in the practical applications mostly the one directional variation of the 

FGM properties is presented. An exponential law for variation of the constituents volume 

fractions is very often presented, e.g. in [5], [6], [7] and in many other references. 

By the FGM bars (link, beam or rode) the transversal variation (continuously or 

discontinuously, symmetrically or asymmetrically) has been mainly considered. The more 

complicated case is when the material properties vary in tree directions - namely in 

transversal, lateral and longitudinal direction of the FGM bar. 
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In the contribution, the homogenization techniques of spatial varying (continuously or 

discontinuously and symmetrically in transversal and lateral direction, and continuously in 

longitudinal direction) material properties for the FGM bar with selected doubly-symmetric 

cross-sections are considered. The techniques (the extended mixture rules (EMR), the 

multilayer method (MM) and the direct integration method (DIM)) are proposed for 

derivation of the effective elasticity modules for axial loading, the transversal and lateral 

bending, the shear modules for transversal and lateral shear and uniform torsion, the effective 

mass density, the electric and thermal conductivities and the thermal expansion coefficient by 

Their detailed description is given in [8], [9] and [10]). 

  

2. Effective material properties calculation 

In design of the bar structures several types of cross-section are used. Especially, for 

the Micro-Electro-Thermo-Mechanical Systems (MEMS), which have a form like the link, 

rode or beam structures, the circular, cylindrical and rectangular or hollow cross-sections are 

most preferable. If the material is homogeneous, the numerical multiphysical analysis 

(electro-thermal-structural) can be done with homogeneous finite elements. In the last time 

the inhomogeneous composite materials, like the FGM, have been used to improve the 

functionality of the systems. The effective material properties of the beams and links depend 

of the cross-section area type and of the real variation of material properties trough the bar 

volume. The homogenization of the varying material properties is made from the assumption, 

that the electric conductance, the thermal conductance, the thermal expansion, the stiffness 

(axial, flexural, torsional) of real bar is equal to these properties for homogenized bar. The 

homogenization methods (EMR and MM)are used in the following numerical experiment, 

were the modal analysis of an actuator like a clampedbeam with spatially varying material 

properties isdone. 

 

3. Numerical experiment 

The clamped FGM beam with rectangular hollow cross-sectionhas been considered 

(as shown in Fig.1). Its geometry is given with: h1 = 0.005 m, hn = 0.00375 m, b1 = 0.01 m, 

bn = 0.0075mand L = 0.1 m. The cross-sectionalarea is 5101875.2 A m
2
; the area 

moments of inertia are 111012077.7 
y

I m
4
and

101084831.2 
z

I m
4
, the cross-sectional 

area polar moment of inertia is 101056038.3 
zyp

III m
4
and the torsion constant is 

10106748.1 TI m
4
. 

 

 
Fig. 1: FGM beam with spatial variation of material properties. 

 

The beamis made of a mixture of two components: aluminum Al6061-TO as a matrix 

(denoted by index m) and titanium carbide TiC as a fibre (denoted by index f).Material 

properties of the components are assumed to be constant and their values are: aluminum 

Al6061-TO – the elasticity modulus 0.69mE GPa, the mass density 2700m  kgm
-3

, the 
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Poisson’s ratio 33.0m ; titanium carbide TiC – the elasticity modulus 0.480fE GPa, the 

mass density 4920f  kgm
-3

, the Poisson’s ratio 20.0f . 

The fibre volume fraction varies linearly and symmetrically according to the x-y and 

x-z planes: 0.1;0fv - the inner edges of the beam are made from pure matrix and linearly 

varies to the outer edges that are made from pure fibre. A constant effective material 

properties are considered in the x – direction. 

Using EMR and MM[9], [10]the effective elasticity modulus for axial loading 
NH

LE in 

[GPa], for bending about axis y -
HM

L
yE and about axis z -

HM

L
zE in [GPa], the shear moduli

H

LyG

and 
H

LzG  in [GPa], torsional shearmodulus
HM

L
xG in [GPa] and mass density 

H

L  in [kgm
-3

] 

have been calculated. The influence of the number of divisions n to the layers on the 

homogenized material properties are shown in the Tab. 1. 

Tab. 1.Influence of the number of divisions n to the layers on the homogenized material 

properties. 

layers 

n 
NH

LE  
HM

L
yE =

HM

L
zE  

H

LyG =
H

LzG  HM

L

xG  
H

L  

2 281.839 296.151 112.716 120.614 3849.643 

5 283.894 302.229 113.901 124.066 3860.743 

10 284.188 303.098 114.071 124.561 3862.328 

15 284.242 303.259 114.102 124.653 3862.222 

20 284.261 303.315 114.113 124.685 3862.725 

 

The FGM actuator – as a bar clamped at the node i has been studied by modal analysis. The 

first eighteigenfrequenciesf [Hz] have been found (see Tab.2) using the new FGM beam finite 

element [10] (calculation has been done with software Mathematica [11] and homogenized 

material properties for n=20 have been applied). Only one our new FGM finite element has 

been used. The same problem has been solved using a very fine mesh – 8967of SOLID186 

elements of the FEM program ANSYS [12]. The average relative difference  [%] between 

eigenfrequencies calculated by our method and the ANSYS solution has been evaluated. 

Tab.2.Eigenfrequencies of the FGM beam. 

Eigenfrequency f [Hz] 
New Finite 

Element 
Ansys  [%] 

1
st
 flexural about axis y 891.6 890.7 0.10 

2
nd

 flexural about axis z 1766.6 1759.2 0.42 

3
rd

 flexural about axis y 4879.3 5384.1 1.77 

4
th

 torsional 9742.4 9788.3 0.47 

5
th

 flexural about axis z 9968.9 9996.0 0.27 

6
th

 flexural about axis y 14406.7 14270.0 0.96 

7
th

 axial 21444.6 21473.0 0.13 

8
th

 flexural about axis z 25130.9 24420.0 2.91 

 

Very high effectiveness and a good accuracy of our approach can be observed from the 

results comparison. 
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4. Conclusions 

The homogenization methods (EMR, MM) are used in the numerical experiment, were the 

modal analysis of clamped beam with spatially varying material properties was done. The 

homogenization methods can be very effectively used by homogenization of electric, thermal 

and mechanical material properties of FGM materials which are used in design of the MEMS 

(which have a form of a simple bar or bar structure). Our solution is very effective and 

sufficiently accurate comparing to the solution obtained by solid finite elements with layer 

wise constant material properties [12]. 
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