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1. Introduction 
The aim of this article is to investigate the impact of changing its own phase modulation 

through the chirp parameter on the shape of the input solitary pulse. We want to find the 
conditions under which the modulation instability may occur in the case of input super-
Gaussian (SGP) and solitary pulse. The modulation instability can occur in two cases and it is 
a possible mechanism for the generation of rogue waves [1]. In the first case it is caused by a 
combination of dispersion and nonlinear phenomena, in the second case it may be a competition 
between loss and gain [2]. In the context of optical fibers, modulation instability can be 
observed in anomalous dispersion regime and can by responsible for a breakup of the CW or 
quasi- CW radiation into a train of ultrashort pulses [3].  

We have simulated the super-Gaussian pulses and then the soliton waves propagating 
in the optical fiber by using the numerical method of lines from the group of finite difference 
methods in detail described by E. H. Twizel [4]. This type of method can solve the second 
order nonlinear partial differential equation like nonlinear Schrödinger equation as a very 
useful equation for simulating the optical pulses propagation in fibers.       

 
  
2. Instability analysis 

Instability investigation in this case has been made with the SGP propagated in optical 
fibers. The start point for the simulation of this kind of problem is the simplified propagation 
equation [5], by ignoring the loss 

where A(z,t) represents the amplitude of the field envelope, β2 is the group velocity parameter 
responsible for dispersion, t denotes time and the nonlinear parameter γ is responsible for the 
self-phase modulation (SPM). The curtail is the SPM induced chirp in this case for a input 
Gaussian pulse in the from 
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For the Gaussian pulse m=1 and m>1 for SGP, t0 denotes the input pulse width and the Leff and 
LNL represent the effective and nonlinear length [6]. To achieve the modulation instability we 
do not consider the losses that mean the Leff is not important for us. It is more useful to calculate 
the dispersion length LD and nonlinear length LNL as 
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where P0 represents the power of the input pulse. Due to increasing the power or nonlinear 
coefficient we can change the SPM induced chirp, which can affects the stability of the 
propagated SGP pulse. In the last part of this article we focused also on the case of input soliton 
pulse and its instability.  
 
3. Results 

The main goal of the simulations that has been made was to find the parameters, 
especially input power P0 and the nonlinear parameter γ by which we can observe the 
modulation instability of the propagated SGP. In Fig. 1 we can observe the shape of the 
propagated SGP with parameters described in detail below the figure. The crucial parameters 
for observation of the instability are the input power and the nonlinear parameter, which has a 
direct impact on the nonlinear length. Also we must note that we work in the anomalous 
dispersion regime. By changing this parameter and the nonlinear length we can directly 
influence the impact of the SPM induced chirp. We have increased these two parameters until 
we have observed the train of pulses in the middle. The initial decrease of the pulse intensity 
is due to the chirp, also this chirp is responsible for the pulse energy distortion. 

 
Fig.1:  The GP instability achieved by parameters m=2, t0=50 ps, P0=100 mW, β2 =-1 

ps/nmkm and the nonlinear parameter γ=0.005 W-1/m  
 
Fig. 2 is used for the better observation of the energy distribution caused by the SPM 

induced chirp. These two figures described the instability and the energy distribution in case 
of the input super-Gaussian pulse. There are many articles describing soliton pulse modulation 
instability like in [7, 8, 9], but on the other hand we do not find many articles focused on the 
investigation of the modulation instability in case of SGP. In the next part of the article we also 
have focused on the most discussed case of the modulation instability in the case of soliton 
pulses. In Fig. 3 we can observe the modulation instability, that is responsible for the generation 
of sideband peaks, in the case of the input second order soliton pulse N=2 is calculated in this 
case using formula     

 
./2

02 DLt−=β
     

(4) 
In the case of soliton pulse we nonlinear parameter in order of tenths of watts like in 

the case of the SGP because the balance between the dispersion and the nonlinear effects are 
much stronger compared with the SGP case. For the simulation of both pulse modulation 
instabilities the already mentioned numerical method of lines was used. This numerical method 
is very powerful in the case of solving the NLS equation for one channel transmission system.   
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Fig.2:  The energy distribution for SGP caused by the SPM induced chirp  

 
Fig. 4 is included for a better observation of the energy distribution in the case of soliton input 
pulse. Also in the case of soliton propagation to reach the modulation instability we must work 
in the anomalous dispersion regime. That can be very hard, because of finding a good interplay 
between the dispersion effects and nonlinear effects in the case of soliton generation. 
Dispersion length is set by the use of equation (3), which means the dispersion effects depend 
also on the input pulse width and on the group velocity dispersion through the term β2. Maybe 
in the soliton propagation regime the impact of SPM induced chirp can in the special case lead 
to a supercontinuum generation. For the future work it can be very interesting to use these 
results and the method to improve the case of generating a supercontinuum in the case of soliton 
propagated pulses and investigate if the supercontinuum can by generated due to the 
modulation instability.      

 
 

Fig.3:  The modulation instability in the case of the second order soliton pulse with the input 
parameters t0=50 ps, P0=80 mW and the nonlinear parameter γ=0.3 W-1/m 
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Fig.4:  The energy distribution for the second order soliton pulse and the spectrum 

broadening due to the SPM induced chirp 
 

4. Conclusion 
 
In this article we have used a numerical study to demonstrate the modulation instability 

in the case of SGP and also in the case of soliton input pulse. In the both cases the induced 
SPM chirp has the most impact on the modulation instability. The value of this chirp is largely 
dependent on the nonlinear parameter due to his direct impact on the nonlinear length. We have 
demonstrated in the simulations that the instability can by observed also in the case of the input 
super-Gaussian pulses not only in soliton case.  
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