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1. Introduction 
 When the acoustic ultrasonic wave propagates in an optically transparent medium 
(water, LiNbO3, GaP, TeO2 etc.), it produces a periodic modulation of the index of refraction (or 
relative permittivity) via the elasto-optical effect. This provides a relative slowly moving phase 
grating which can generate scatter (or diffract?) portions of an incident optical radiation into 
one or more directions. This phenomenon, known as the acoustooptic scattering, has led to a 
variety of optical devices 
that perform spatial, 
temporal, and spectral 
modulations of optical 
radiation.  
 The acoustooptic 
scattering is usually 
explained as a collision of 
photons and phonons [1]. 
For these quasi-particles 
to have a well defined 
momenta and energies, 
we must assume, that we 
have interaction of mono-
chromatic plane waves of 
optical radiation and 
sound. The width of the 
transducer L must be 
assumed to be sufficient-
ly wide in order to 
produce plane wave fronts at a single frequency (Fig. 1). In the process of collisions two 
conservations laws have to be obeyed, namely, the conservation of energy and momentum. In 
the case where L is sufficiently short, we have a first form of a scattering, called Raman-Nath 
scattering. The condition L«Λ2/λ defines therefore the Raman-Nath scattering regime [2]. In 
this regime many scattering angles may exist because various directions of plane waves of 
sound are provided from a small-aperture transducer. If L»Λ2/λ (Λ is the sound wavelength, λ 
is the optical radiation wavelength in the acoustic medium), only scaterring angles Φ0 and Φ-1 
are observed. In this case the acoustooptic device operates in the so called Bragg regime since 
this is similar to what happens in Bragg scattering of X-rays or electrons on a crystal lattice. 
The „grating constant“ in this case is equal to sound wavelength and the required angle of incidence 
Φinc is given by well-known Bragg condition 2ΛsinΦinc = λ [1, page 557]. 

           Fig. 1 Basic acoustoptic device (taken from [1] ) 
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 In our previous work [3] we have presented a model of the optical radiation intensity 
distribution in the Raman-Nath acoustoptic scattering regime. In this work a possible semi-
classical model of the intensity of scattered optical radiation in the Bragg regime is proposed 
and briefly presented. 
 

2. Theory 
The Bragg condition 2ΛsinΦinc = λ does not specifically describe the real intensity 

distribution when the optical radiation passes through the transparent sample in which the plane 
ultrasonic acoustic wave propagates. It defines only the angle of incidence needed for creation 
of intensity scattering maxima appearing at two angles Φ-1 and Φ0 . The acoustoptic cell shown 
in Fig. 1 may be thought [3] to act as a thin phase grating with an effective grating line 
separation equal to the wavelength Λ of the sound. It is well known that a phase grating split 
incident optical radiation in general into many various orders of scattering maxima, not only 
into two directions. The main directions of the scattered (or diffracted) radiation maxima inside 
the sound cell are governed by the „grating equation“ with non-zero angle of incidence, typical 
for diffraction many-slit optical grating 
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Hence, the angle between neighbouring orders in Fig. 1 is equal to λ/Λ inside the cell. (Outside 
the cell this angles are increased through refraction on the rear interface; k and K are 
propagation constants of the radiation and sound waves inside the cell.) The energy 
conservation law leads to the equation 
     
    Ωωω mm   ±=        (2) 

 
with ωm being the frequency of the m-th order of scattered optical radiation, ω is the frequency 
of incident radiation and Ω is the frequency of sound wave (sound velocity is about 1-7 km/s). 
The (very small) changes of the frequencies are due to (in general multiple) photon-phonon 
interactions (connected with emission or absorption of phonons). We will assume that x axis is 
in the sound direction and z axis lies in the direction from left to right in Fig. 1. The next 
analysis is in some aspects similar to work [4]. We assume an isotropic inhomogeneous non-
magnetic non-conductive medium without birefringence. 
 The interaction between the electromagnetic wave E(x, z, t) (polarized along the y axis) 
and longitudinal sound wave field  S (z, x, t) can be described by Maxwell´s equations. The 
time varying permittivity can be written [3] as  
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e. g. the time dependent part of permittivity ε1 is proportional to the sound field amplitude S 
and C is material constant of medium. From Maxwell´s equation (assuming E.grad ε(x,z,t) = 
0) we can obtain the wave equation in the form 
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Because the time variation of ε (x,z,t) is much slower than that of E, we will only retain a term 
which does not contain the time differentiations of  ε (x,z,t): 
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It is a wave equation often used to investigate strong interactions in acoustoptics. We will now 
introduce harmonic variations in the optical radiation and sound as complex functions in the 
forms 
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where c.c. denotes complex conjugate. We assume the frequency mixing of fotons and acoustic 
phonons in the time-dependent phase of E according to equation (2). Substituing (6) to (5) and 
assuming Ω « ω we obtain the infinite coupled-wave system 
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where k is propagation constant of electromagnetic (optical) radiation and the asterisk denotes 
complex conjugate. The quantity Em is the complex spatial part of the mth order radiation wave 
function at frequency ω + mΩ = ωm. 
 We will now consider a uniform sound wave of the width of transducer L propagating 
along x axis: 

        ( ) ( ) ( )
Λ
π2

     ; exp, 0 =−== KiKxSxSzxS     (8) 

We expect that the spatial part of wave function Em can be written as 
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with the choice of angle Φm according to eq. (2). Substituing (8), (9) and (2) into (7) we obtain 
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Here we have assumed that within a wavelength λ the quantity E0m and its first derivative does 
not change appreciably with z and hence the term ∂2E0m/∂z2 can be neglected. The last two 
terms in (10) represent the interactions between adjacent orders of scattered optical radiation 
with the sound waves. The first two terms on the left-hand-side are responsible for 
propagational diffraction and the third term represents the effect of the mth order of radiation 
travelling in direction slightly different from z. If the width L is not large the propagational 
diffraction can be neglected. Because the angles Φm are very small (if Φinc is very small or 
zero) we can assume that E0m depends only from z. The equation (10) then becomes 
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which can be solved with the boundary condition (0mδ  is the Kronecker delta function): 
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The physical interpretation of (11) is that there exists a mutual coupling between neighboring 
orders of scattered radiation. But the phase of contributions varies with z and so the terms in 
exponential functions represent the lack of phase synchronism in this coupling process. 
 Unlike of the Raman-Nath regime in the Bragg scattering regime the transducer 
thickness is sufficiently large and the phase synchronism between neighboring orders of wave 
functions can occur only for m = 0 and -1. Then the exponential factors in (11) are equal to 
zero. This implies the condition Φ-1 = -Φ0 = Φinc i. e. the first scattering maximum occurs in 
the direction of incident beam and the second maximum in direction -Φinc only. It is typical for 
the Bragg scattering regime. The coupling equations between two modes of the wave functions 
are according to (11) and (12) 
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The solutions for z = 0 to L and for small but non-zero Φinc read for wave functions of the two 
scattering maxima 
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These equations represent the expressions for the optical radiation scattered on acoustic waves 
in the Bragg regime. 
 
3. Conclusion 
 The observable quantity, e. g. mean time value of the intensity of scattered optical 
radiation is equal to (1/2)ε0cE0

2 or (1/2)ε0cE-1
2 . The presented model describes in such a way 

the layout of intensities of two scattering maxima observable in standard acoustooptical device 
operating in Bragg regime. 
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