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1. Introduction  

Except of the contemporary broad application of optical fibres in modern transmission 
telecommunication and information systems they are now also frequently used for wide 
sensory applications especially in fibre optic sensors with distributed parameters (FOSDP). 
These sensors are based on the local interaction of optical fibre with various external physical 
quantities like mechanical stress, tension, friction, temperature, electric and magnetic field 
intensity and so on. These quantities induce the local changes of the index of refraction in the 
fibre and subsequently the changes of the optical radiation parameters in the fibre. It concerns 
not only the amplitudes of the optical waves (modes) but also their polarization properties. 
The modes polarization is very sensitive to the above mentioned external factors. One of the 
most significant method that makes possible to measure local polarization parameters of the 
propagating optical wave in the optical fibre is Polarization Optical Time-Domain 
Reflectometry (PO-OTDR) that is one of the several existing variations of the original OTDR 
that was discovered and realized in 1976 by Barnoski and Jensen [1]. The basic idea of the 
OTDR consists in launching a short impulse of optical radiation into the test fibre. During the 
propagation along the fibre a part of impulse energy is scattered isotropically by the 
mechanism of Rayleigh scattering on the microscopic fluctuations of the index of refraction 
what reflects also in attenuation of the impulse [2]. A part of the scattered energy 
proportional to the numerical aperture and other parameters of the fibre is captured by the 
fibre core and directed to the input end of the fibre where it is detected and measured. 

PO-OTDR is based on the same principle as OTDR. Only the polarization controller is 
added before input end of the fibre enabling to set the input polarization and a polarization 
analyser at the end of the fibre making possible to measure the Stokes polarization parameters 
of the backscattered radiation [3]. From the practical point of view it is significant that OTDR 
and also PO-OTDR measurement can be done with the access to only one input end of the 
fibre. 
The main task and problem of the PO-OTDR is the transformation of measured  polarization 
parameters of the back-scattered light into the distribution of the full local polarization 
parameters along the fibre and consequently into the local physical parameters of the fibre 
determining the total local fibre birefringence [4]. 

At the beginning of this paper we describe analytically in terms of Stokes vectors and 
Mueller matrices the space evolution of the polarization of the optical radiation propagating 
in the homogeneous single mode birefringent optical fibre. The main focus is on the analysis 
of the matrix based approach to the extraction of the local optical fibre birefringence 
parameters from the measured data by the PO-OTDR.  
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2. Birefringence description in homogeneous optical fibre 

To be able to analyse the axial distribution of the light polarization along a non-
homogeneous optical fibre it is at first necessary to describe this problem in a homogeneous 
fibre. 

As it is generally known in an ideally homogeneous and isotropic single-mode optical 
fibre two independent degenerated orthogonally polarized modes can propagate. The 
corresponding propagation constants of these modes are equal and the modes do not mutually 
exchange the energy. There is no interaction between them. However due to the index of 
refraction microscopic fluctuations and accidental changes of fibre geometrical parameters 
and also due to the influence of some external factors (temperature, tension,…) the modes 
degeneration is lost. In such a way the propagation constants of the original non-interacting 
modes become functions of the position on the fibre and mutual coupling between modes 
takes place. 

Let us define the complex amplitudes ax(z), ay(z) of both modes (harmonic plane waves 
with the time dependence e+jωt) as a function of the propagation distance “z” along the z axis 
of the orthogonal coordinate system which is identical with the fibre axis. Then using the 
weak coupling approximation [5] one can write for the resulting complex amplitude of the 
total electric field the following relation 
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and the influence of mutual coupling between modes can be described generally by two first 
order differential equations of the following form 
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where kij are mode coupling coefficients and d/dz represents the z derivative. Except of 
coupling coefficients kij and the coordinate z the solution of these equations depends also on 
two initial conditions ax(0), ay(0) that define the input SP. 
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The defined formulation is not quite suitable mainly due to the necessity of rather 
demanding measurement of complex amplitudes at optical frequencies. This can be avoided 
by the transformation of that description system (Jones matrix) into one based on 4 Stokes 
parameters Si(z) (Mueller matrix) [6] defined by the use of the above introduced complex 
amplitudes in the following way 
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Combining (4) and (2) and neglecting the optical loses (dS0 /dz = 0, S0 = const.) it is possible 
to write the system of differential equations for the Stokes parameters in the form: 
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where K = k12 = k*21 = k1 + jk2 a Δ= k22 – k11 . 

Without depolarization it holds S2
0 = S2

1 + S2
2 + S2

3 and the solution of (5) makes 
possible to get the expression describing the dependence of Stokes parameters on the distance 
z along the homogeneous optical fibre. If kij are supposed not to depend on z coordinate the 
system of equation (5) has the solution [7] 

 
S(z)=S1(z)u1+S2(z)u2+S3(z)u3=[S(0).SP].SP+[S(0)–[(S(0).SP)SP]].cos[(δ)z)] ± [S(0)xSP]. 

sin[(δ)z],    (6)  
 
where S(0)= S1(0)u1+ S2(0)u2+ S3(0)u3 and SP=S1pu1+ S2Pu2+S3Pu3 are the Stokes vectors of 
the input polarization and  one of the two vectors of principal state of polarization (PSP) 
respectively. PSP are those that do not change along the propagation. From (6) one can 
deduce that the output SP vector S(z) rotates around the PSP vector SP under the constant 
angle tilted between the S(0) and SP. 
The PSP Stokes vector components   can be calculated as follows [8]: iPS
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where δ  is the absolute value of the fibre elliptic birefringence vector representing the 
difference between the propagation constants of the two PSP. The derived relations make 
possible to calculate the local SP distribution along the fibre or the dependence of the output 
SP as a function of coupling coefficients which can be influenced by various external 
physical magnitudes. If the fibre length z=l is sufficiently short and the external factor is 
constant along that short fibre it is possible to calculate the coupling coefficients using the 
measured Stokes vectors [S(z=l)] for a given [S(z=0)]. If the mechanism of transformation of 
an external physical quantity change into change of coupling coefficients is known it is 
possible to use the measured changes of corresponding Stokes vectors for the calculation of 
external quantity change. It is a crucial point of the application of the OF as OFSDP. 
It is important to stress that the results achieved above are useable only if the input SP is 
given. Due to the fact that the PSP Stokes vector components (7) that depend on Δ and k1 ,k2 
are generally not known  it is not possible to calculate these parameters  from one 
measurement of Stokes parameters. This problem can be solved by the introduction of the 
MM formalism relating the input SP [S(0)] with the output one [S(z)]. It can be expressed by 
the following linear matrix equation 

 
[ ] [ ][ ])0(.)()( SzMzS =   ,                                                          (9) 
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and C = cos (δz) and S = sin (δz). 

Matrix (10) describes the case of the most frequently appearing uniform OF with 
elliptical birefringence without consideration of depolarization and loses. As a result the 
determination of the MM coefficients by the measurement makes possible to assign the true 
output SP vector S(z) to an arbitrary input SP vector S(0). However the above analytical 
solution is not applicable to real non-homogeneous OF. For the description of a non-
homogeneous birefringent fibre a suitable model utilizing the above obtained results for a 
section of homogeneous OF is needed. Such a model should provide a basis for sufficiently 
precise numerical solution with acceptable degree of complexity and computation time. 

3. The concatenated model of non-homogeneous birefringent optical fibre 

 One of the possibilities for modelling of nonhomogeneous OF is based on the division of 
the fibre into a series of sufficiently short sections that can be considered as homogeneous 
(concatenated model).  Each section is characterized by the Mueller matrix Mi relating the 
Stokes vectors at the input and output of the i-th section. The basic idea of this model is 
represented by Fig.1. 
 
 Sin 

M1 M2 ........... Mi-1 Mi-2 Mi Mi+1 ........... 
      
 
 

 

Fig.1. The basic representation of the „concatenated model“ of the non-homogeneous OF 

 

Originally [9] the basic idea was to divide the whole fibre into a series of equal sections of 
the length “li„ and to describe the relation between the input test impulse SP vector Sin and 
the measured SP vector Sout corresponding to the back scattered radiation coming from the n-
th section by the following matrix equation 

Sout-i =(Mn.Mn-1........M2.M1)T.MM.( Mn.Mn-1........M2.M1). Sin,                        (11) 

where Mi is the forward MM of the i-th element and the MM is the so called „mirror“ MM 
that changes the „left-handed“ SP into „right-handed“ one and opposite and the whole first 
transposed matrix in the brackets of (11) represents the „total backward“ MM. The MM of 
each section can be generally represented by three birefringence parameters – total elliptical 
birefringence δi. azimuthal angle of the fast axes θi and the ellipticity angle χi [10]. By 

Sout 
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measuring the Sout-i for a suitable set of Sin and applying the equation (11) for the 1-st section 
it is possible to calculate directly birefringence parameters of the first section (δ1, θ1, χ1). 
Then taking together first and second section and having the known parameters of the first 
section one should get the (δ2, θ2, χ2) of the second section and so on. But this procedure is 
not easily applicable because as it can be shown the matrix equation for the first section does 
not provide enough mutually independent equations. This problem can be solved by dividing 
each elementary section into two equal subsections and then there will be enough 
independent equations for the calculation of all birefringence parameters of the first section 
and subsequently of all others. But this “concatenated” procedure is not suitable due to the 
gradual accumulation of the numerical errors by the transmission of those errors from the first 
section to the second and then to the third and so on. To avoid that problem one can use the 
other model based on the equivalent replacement of MM of all elementary sections located 
before the chosen n-th section by the MM of the equivalent “general elliptic retarder (GER)” 
as it is described in more detail in the following section. 

4. General elliptic retarder model of the non-homogeneous birefringent optical fibre 

Let us consider a non-homogeneous twisted optical fibre with the combined linear 
birefringence “βL“ and the circular birefringence ρ=τ(2-g). Circular birefringence is a 
combination of the geometrical one caused by the physical twist of the fibre “τ” (given in 
rad/m) and that caused by elasto-optic phenomenon represented by the stress optic coefficient 
“-g” (g=0,16 for Si OF). Under these conditions for a given section “n” on the fibre (length 
ln=l1+l2+l3) located at point “z”, see Fig.2, it is possible to write the following total MM that 
describes the forward path (0-z-l1) and return path (l1-z-0) polarization transmission 
properties of the OF under test 

Sout-n(z) =[MnRET(δ2, θ2, χ2)].[MnF(δF, θF, χF)].[MnFOR.( δ1, θ1, χ1)]. Sin ,              (12) 

where MnFOR.( δ1, θ1, χ1), MnRET(δ2, θ2, χ2) are the arbitrary MM describing the transmission 
of the PS corresponding to the forward and backward propagation of the radiation from the 
source to the begin of the n-th fibre section and back respectively. The relevant n-th optical 
fibre section under analysis is described by the MM  MnF(δF, θF, χF) that includes the forward 
propagation of test impulse polarization and the return path of the back scattered radiation 
polarization transmission from the chosen fibre section with the local PSP parameters (δF, θF, 
χF).  These parameters are functions of the physical or fundamental fibre section parameters 
“τ”, “-g” and “βL“. The section is considered as “homogeneous”. It was formally approved 
[10] that “forward-backward MM” of the fibre section MnF (δF, θF, χF) can be written in the 
form 

MnF(δF, θF, χF)]= [MFS(δF,θF, χF)]T.MMIR. [MFS(δF,θF, χF)]                      (13) 

where MMIR  is a unit diagonal “mirror matrix” with the negative unit in the last row and 
column that changes the left-handed polarization into right-handed and opposite. Taking into 
account the meaning of the equation (6) or its equivalent (9) and the MM (10) and also the 
fact that the n-th fibre section at position „z“ is homogeneous it is possible to state that 
forward MM MFS(δF, θF, χF) describes the rotation of the PS vector S(z) around the total 
birefringence vector of that section that is parallel with the PSP vector SP defined by (7). 

To extract the birefringence parameters of the analysed fibre section (δF, θF, χF) one can 
use the equation (12). It is necessary to realize that the total transfer MM including the 
forward path to the n-th section plus forward-return path of the n-th section and backward 
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path to the detector is actually an arbitrary „general elliptic retarder“ characterized by three 
parameters (δ,θ,χ) and defined by the equation 

 
Sout(z) = MGER(δ,θ,χ).Sin                                                     (14) 

Generally speaking the unknown GER parameters (δ,θ,χ) can be extracted from the 
measurement results of the Sout(z) for the defined three input SP vectors Sin. However due to 
the fact that in the (12) there are 8 unknown  parameters (δ1,θ1, χ1,δ2,θ2, χ2,βL,τ) the 
measurement for the set of three Sin does not provide sufficient number of equations for 
calculation of 8 unknown parameters. However it is possible to solve this problem by 
dividing the analysed fibre section into three equal parts and perform the measurements of 
pertaining GER for three points in that section (l1, l2, l3), see Fig.2. But it is possible only in 
the case if the divided section is homogeneous so the parameters (δi,θi,χi) are equal in all 
subsections. In such a way one shall have enough equations for the unambiguous calculations 
of all 8 unknown parameters pertaining to the analysed fibre section. 

 

Sout

Sin
MFS1(δF1,θF,χF,l1)

MFS2(δF1,θF,χF, l2) 

MFS3(δF1,θF,χF, l3)

MGER1‐FOR.(δ1F,θ1F,χ1F,z) 

MGER2‐RET.(δ2R,θ2R,χ2R,z)  Sout1=MGER1(δ1,θ1,χ1)].Sin 

Sout2=MGER2(δ2,θ2,χ2)]. Sin

Sout3=MGER2(δ3,θ3,χ3)]. Sin

 

 

 

 

  

 

 

Fig.2. The relations between the particular parts of GER Mueller matrices 

                         

5. General elliptic retarder model verification 

The possibility of the application of the above described ”GER model” for the extraction 
of the local birefringence parameters of the non-homogeneous OF was verified by numerical 
simulation using the tools of MATLAB software. The equation (10) represents the MM of a 
GER in terms of PSP parameters (δ, θ, χ). Therefore it is possible to calculate these 
parameters for our three MM of total GER describing the relation between the chosen input 
SP vectors Sin and measured output SP vectors Sout for a given OF section with known 
birefringence parameters. The calculated MM parameters actually represent the measured 
ones. On the other hand we are able to write explicitly the corresponding MM of the total 
GER for the particular three subsections of the analysed OF section in terms of the sought 
parameters (δ1,θ1, χ1)≡ GER1, (δ2,θ2, χ2) ≡GER2, (δF,θF, χF) ≡GERF (see Fig. 3). Comparing 
the (measured) simulated components of the MM for the total GERs of three subsections and 
the corresponding ones expressed analytically in terms of (δi,θi, χi) allows one to write 27 
algebraic highly nonlinear equations for unknown parameters  (δi,θi, χi). The solution of that 
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set of equations is not simple. Therefore one of the suitable approaches to the solution of that 
problem is the application of the suitable numerical tools of such softwares like Matlab or 
Mathematica. 

 In the following (see Table 1) we bring the results of such a numerical simulation using 
Matlab 12 (tool „fsolve“). The sections/subsections of the length of 90/30 cm on three 
different OF with a given parameters of elliptic birefringence (δFi,θFi,χFi, i=1,2,3) were 
simulated using chosen „arbitrary“ parameters of GER1 and GER2 as it was mentioned in the 
model description. The results are summarized in the Table 1.  

Table 1: The results of the numerical evaluation of the OF sections (GER δFi,θFi,χFi) 

  OF1 OF2 OF3 
OF section 
parameters: 

δ1 θ1 χ2 δ2 θ2 χ2 δ3 θ3 χ3 

Given 
values: 0,23898  0,61796  0,21816 0.37193 0,65161 0,52359 0.32208 0.11117 0.73303

Calculated 
values: 0,23898  0,61796  0,22637 0.37193 0,65161 0,54071 0.32208 0.11117 0.74107

Deviation 
in  [%]: 0,00000  0,00000  ‐3.7636  0.00000 0.00000 ‐0.7597  0,00000 0,00000 ‐1.0960 

 

The obtained results characteristic by the maximum error of cca 3 % indicate the feasibility 
of the used „GER method“ for the extraction of OF birefringence parameters from measured 
data by PO-OTDR in practical applications like OFSDP.  
 
6. Conclusions 

A model for the extraction of the local optical fibre birefringence parameters from the 
measured data by PO-ODTR method was presented and described. The basic idea consists in 
the appropriate use of the general elliptic retarder representation for the forward path of the 
testing impulse optical radiation to the selected section of the measured OF and for the 
forward-backward path of the selected fibre section and for the backward path of the 
backscattered radiation. By dividing the analysed section into three parts and under the 
condition that the local birefringence parameters along the section are constant one can obtain 
enough equations for the unambiguous calculation (extraction) of the sought local 
birefringence parameters of the OF section from measured data. The significant advantage of 
the method is in avoiding the accumulation of numerical errors as it is the case e.g. in the 
“concatenation model”. On the other hand the necessary numerical solution of a set of rather 
complicated nonlinear equations may become in the case of application of not enough 
efficient numerical software tools a critical point of the method. But at present time it seems 
to be not a serious problem. The method may be applied especially in the design and 
realization of OFSDP. 
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