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1. Introduction 
Mechatronic is one of the most dominant research and application areas in nowadays' 

engineering, consumer electronics and services. Mechatronic systems represent complex 
integrated intelligent systems making use of a synergy between information technology, 
electronics, mechanics, communication and control. For an optimal utilization of their 
enormous potential it is necessary to examine, analyze, model, control and optimize their 
structure and parameters for a wide range of applications. Development of dominant 
mechatronic parts like sensors and actuators still continues and is strongly dependant on the 
design of new materials and applications of modern approaches from the information, 
communication and control technologies. 

Mechanical resonance of mechatronic devices is in most cases a negative 
phenomenon. If the frequency of the harmonic loads coincides with the device 
eigenfrequency, the amplitude of mechanical vibration rises theoretically into infinity, which 
can lead to device inoperability or destruction. Therefore, the calculation of the device 
eigenfrequencies is straightforward. 

Modeling of structure made by FGM by classical finite elements is very difficult, 
because each finite element has to have other material properties. The finite element mesh 
has to be very fine, which makes the preparing of the task input data very time consuming. 
Therefore, in contribution [1], new 2D FGM beam finite element was developed which is 
able for modal analysis of the plane beam structures. This new beam finite element will be 
briefly described in this contribution, and will be used in modal analysis of chosen FGM 
beam structures.  
  
2. FGM beam finite element 

Let us consider a two nodal straight beam element with constant rectangular cross-
sectional area  and the quadratic moment of inertia bhA = 12/3bhI =  (Figure 1). Here,  

 and ( ) ( )xkxk x, ( )xk  is the longitudinally varying transversal, axial and rotational elastic 
foundation, respectively. 
The functionally graded material of this beam arises from mixing two components (formally 
named as matrix and fibres) that are approximately of the same geometrical form and 
dimensions. The continuous spatial variation of the effective material properties can be 
caused by continuous spatial variation of both the volume fraction and material properties of 
the FGM constituents. Both the fibers volume fraction ( )yxv f ,  and the matrix volume 
fraction  are chosen as polynomial functions of x, and with continuous and 
symmetrical variation through its height h with respect to the neutral plane of the beam. The 
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volume fractions are assumed to be constant through the cross-section depth b. At each point 
of the beam it holds: ( ) ( ) 1,, =+ yxvyxv mf  . The values of the volume fractions at the nodal 
points are denoted by indices i and j. The material properties of the constituents (fibres - 

 and matrix - ) vary analogically (depending on inhomogeneous temperature 
field for example) as stated by the variation of the volume fractions. 

( yxp f , ) )( yxpm ,

 

 
Fig.1:  Real and homogenized FGM beam/link element. 

 
In the homogenization of the spatial varying material properties the direct integration method 
will be used [2]. From the assumption that the respective property (e.g. stiffness) of the real 
beam must be equal to the analogical property of the homogenized beam, the homogenized 
longitudinal elasticity modules for: tension – compression ( )xE NH

L , bending ( )xEMH
L , 

shear , and the homogenized mass density( )xGH
L ( )xH

Lρ  can be calculated, respectively. The 
effective material properties vary continuously along the local finite element axis x. The 
average shear correction factor  has been calculated from the shear stress energy function 

 [2]. 
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The local finite element equation of new 2D beam FGM finite element is: 
 

                                                    (1) 
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The non-constant element matrix terms  (functions of natural frequencyjiB , ω , the 2nd order 
beam theory axial force   (it has to be known), the shear correction factor, the varying IIN

 208



stiffness and other beam parameters) of the local finite element matrix are not expressed 
in detail here from space spending point of view.  and   is the vector of the local 
forces and vector of the local displacements, respectively. When local matrix  is known 
the global finite element matrix  (according the global coordinate system) can be 
derived. The global matrix  is obtained by usual transformation of the local matrix . 
Derivation of the local finite element equation (1) and its transformation in a global 
coordinate system is described in [1] in detail. 

locB
locF locU

locB
globB

globB locB

 
3. Numerical experiment 

The actuator has been considered as the beam structure (shown in Figure 2). It 
consists of 14 parts - beams. Their square cross-section is constant μm10== hb . Lengths of 
the parts are: ,  and . The 
angles 

μm300=iL { }14,13,12,11,10,9,6,5,4,3,2,1=i μm60087 == LL

1α  and 2α  are: °= 701α , °= 202α . Actuator of such geometry can be used as a rotary 
microengine [3].  
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Fig.2: The geometry of the actuator. 

 
Material of the beams consists of two components: aluminum Al6061-TO as a matrix 

and titanium carbide TiC as a fibre. Material properties of the components are constant (not 
temperature dependent): Al6061-TO - the elasticity modulus 0.69=E GPa, the mass density 

2700=ρ kgm-3, the Poisson’s ratio 33.0=ν ;  TiC - the elasticity modulus GPa, 
the mass density 

0.480=E
4920=ρ kgm-3, the Poisson’s ratio 20.0=ν . 

There are considering two different longitudinal variation of the fibres volume fraction 
and have been chosen as the polynomial function of the local beam axis x: 

a) ( ) 2
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The first variation of the fibres volume fraction (denoted by a) has been considered in parts 1, 
2, 5, 6, 9, 10, 13 and 14 (with initial point i, k, m, o, r, t, u and w), the second variation of the 
fibres volume fraction (denoted by b) in parts 3, 4 11, and 6 and third variation of the fibres 
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volume fraction (denoted by c) in parts 7 and 8. The same values of the fibres volume 
fraction at the points j, l, n, p, q, s and v have been assumed. 

The effective material properties of the homogenized beams (as a function of their local                 
x-axis) have been calculated by the direct integration method. Because of only longitudinal 
variation of the constituents volume fraction in this case, the homogenized elasticity modulus 
(for axial and transversal loading) are equal each other. 

The average shear correction factor [2] for all beams is 38.0=smk  (constant Poisson ratio 
has been assumed for simplicity). The coupled modal analysis of the FGM actuator clamped 
at the nodes i, k, m, o, r, t, u and w has been studied. Only one our new finite element was 
used for each actuator’s part (totally 14 elements). The same problem has been solved using a 
fine mesh – 2400 of BEAM3 elements (each element has different constant material 
properties) of the FEM program ANSYS. The average relative difference [%] between 
eigenfrequencies calculated by our method and the ANSYS solution has been evaluated. 

Δ

Table 1: Eigenfrequency of the actuator made of one constituent 

Eigenfrequency 
[Hz] 

New finite 
element ANSYS Δ  (%) 

1st 135960 138880 2.10 
2nd 175544 179060 1.96 

As shown in Table 1, the values obtained by both finite elements agree very well with each 
other.  

 
4. Conclusion 

Modal analysis of chosen actuator which is built of the FGM beams has been done by 
our new 2D beam finite element. Continuous longitudinal variation of material properties has 
been considered. Shear force effect was considered - the average value  of the shear 
correction function   has been applied. 

smk
)(xk s

The obtained results have been studied and compared with results obtained using a very fine 
mesh of the FEM program ANSYS. The main additions of our new approach are: 

• By new finite element can be very effectively analyzed not only a single 
beams, but we can analyze the beam structures made of FGMs or other 
composite material with spatial variation of material properties. 

• Our new finite element is very effective and accurate. 
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