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1. Introduction 
Most of iron based construction materials are polycrystalline alloys. Two adjacent 

grains are connected by grain boundaries (GB). The geometry and chemistry of GB play 
important role in the macroscopic physical properties of polycrystalline materials. 
Understanding the influence of GB properties on material behaviour is essential for material 
engineering. 

Direct observation and experimental study is limited by the lack of resolution 
of experimental techniques. Computer technology underwent significant development in last 
few decades. The development enables to solve a variety of complex problems numerically. 
Computer simulations are therefore effective complementary tool for grain boundary research 
these days. Important step, which is necessary for simulations of GB properties, is to find 
an optimized grain boundary structure. It is possible to use various optimization methods, like 
simulated annealing, molecular dynamics or gradient methods [2-5]. Genetic algorithm (GA) 
is global optimization method. GA optimization strategy is based on analogy with evolution 
and adopts its principles. Only the strongest and the best adapted individuals survive and 
raise offspring. The biggest advantage of GA is efficiency to overcome energy barriers and 
thus not get stuck in local extreme. Therefore it tends to be good candidate for GB structure 
optimization [6]. The aim of this work is to apply GA optimization on bcc-Fe symmetric tilt 
[100] grain boundaries. In particular Σ5(210), Σ5(310), Σ17(410) and Σ13(510).  

This paper is arranged as follows. We will describe developed genetic algorithm 
in sec. 2. In sec. 3 we will present results and comparison with simulated annealing (SA) and 
in sec 4 we will conclude the results. 

 
2. Methodology 

Four supercells with grain boundaries Σ5(210), Σ5(310), Σ17(410) and Σ13(510)  
were prepared. Two ideal crystals were rotated in opposite direction by the same angle 
around x axis. The angles are listed in table 1. Exceeding atoms were deleted. Simulation 
supercell of atoms contains two grain boundaries: one in the middle of the cell and second is 
from geometrical reasons split between the top and bottom of the cell (fig.1). Embedded atom 
method (EAM) and periodical boundary conditions were used to compute the whole cluster 
energy. Only middle grain boundary was optimized by genetic algorithm. Outer boundary 
was excluded from optimization process. Geometry of computational cell is shown in fig.1. 

Important optimization parameter is GB energy. The energy is defined as  
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where E1 is energy of cluster with two geometric grain boundaries, E is energy of cluster with 
one optimized  and one geometric grain boundary, N is total number of atoms in cluster, Ec is 
cohesive energy and sx, sy are dimensions of cluster in x and y direction. Summarization of 
simulation supercells parameters is in table 2.  Results were obtained by Mendelev[1] 
potential. Lattice parameter was set up to optimal value given by chosen EAM potential. 

 
Tab. 1.  Characteristic rotating angle for used grain boundaries. 

grain boundary Σ5(210) Σ5(310) Σ17(410) Σ13(510) 
angle 26.565° 18.435° 14.036° 11.31° 

 
Tab. 2.  Parameters used for simulation supercells. In particular: N - total number of atoms 
in a cell, sx, sy, sz -dimensions of a cell in x, y, and z direction, Nga - number of atoms inside 

GA-zone, sga - dimension of GA-zone in z direction. 
 N sx[Å] sy[Å] sz[Å] Nga sga

Σ5(210)  128 5.71 6.384 40.858 62 sz/2 
Σ5(310) 168 5.71 9.028 37.92 84 sz/2 
Σ17(410) 224 5.71 11.771 38.777 54 sz/4 
Σ13(510) 280 5.71 14.558 39.193 68 sz/4 

 

 
Fig.1:  Geometry of cluster with two grain boundaries. Left panel shows optimized 

boundary (the plane is in dark grey) and geometric boundary (the plane is in light grey). 
Right panel shows GA-zone, within which the genetic algorithm is applied. 

 
Simulation started with “zero-generation” initialization. Our “zero-generation” 

consists of 20 individuals, which means 20 different GB structures. Randomized positions of 
atoms within GA-zone were used to obtain the structures. Randomization was limited by 
radius 0.5Å. Each individual was evaluated by fitness function. Fitness function is equal to 
GB energy. Lower energy means better adapted individual. Selection, crossover and mutation 
are basic GA operators [7]. The operators are used to form next generation. In our GA, the 
next generation was formed as follows: Two best individuals are moved directly to the next 
generation. Eleven individuals are chosen by tournament selection. Seven structures are 
obtained via crossover. Two random parents from previous generation form offspring. 
Parents atoms are sorted according to x, y, or z coordinate. The half of atoms inherits the 
offspring from one parent and the second half from the second parent. Number of atoms 
inside GA-zone remains constant. It should be noted that mutation is motive force of GA. 
Mutation is applied on five random selected individuals from new population. Position of five 
random atoms is changed within given radius. The radius starts at 0.08Å and decreases to 
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80% after each 400 steps. In the case of constant energy in 400 consecutive generations, the 
population is regenerated. The evolution is finished after 50000 generations. 

It could be note that it is better to use different method for technique validation than to 
compare results with other publications. A result of simulation highly depends on used EAM 
potential. Simulated annealing (SA) was used as a comparison method. Simulated annealing 
was applied in the same way as GA to ensure the same initial geometrical conditions. Only 
the atoms inside GA-zone were annealed. The temperature decreases from 350 K to 22 K 
in 200 steps. At each temperature 1000 optimization cycles were performed. The radius 
within which the atoms positions were randomized varies from 1x10-2 to 2.5x10-3 according 
to temperature in order to reach acceptance ratio 0.5. Linear or quadratic extrapolation was 
applied to obtain grain boundary energy at 0K. 

 
3. Results 

Grain boundary energies obtained by GA and SA are summarized in table 3. For grain 
boundaries Σ5(210), Σ5(310), Σ17(410) GA-optimization leads to same results as SA-
optimization. Moreover, in the case of GA-optimization, we have physically structures with 
presented energy, but in case of SA-optimization we do not. The value corresponding with 
real configuration of atoms is the one at 22K. It is essential to have physical configuration of 
atoms, corresponding to the lowest grain boundary energy, for further research. Convergence 
in energy of grain boundaries as a function of temperature (SA) as well as a function of 
generations (GA) of various GB is shown in fig. 2.  
 

 
Fig.2: Convergence in energy of grain boundaries as a function of temperature (SA) as well 
as a function of generations (GA). Type of the grain boundary is displayed at the top of the 

panel. 
 

A big mismatch between SA and GA in energy occurs in the case of Σ13(510). Grain 
boundary energy obtained by SA is much lower. As it is obvious from SA-convergence in 
fig. 2, SA-algorithm overcame potential barrier and jumped out from the local minimum 
around temperature 60 K, while GA could not escape from it. It is confusing because 
especially genetic algorithms are more efficient for their ability to overcome local extremes. 
The comparison with results presented by Terentyev [2] indicates, that both methods SA and 
GA could have got stuck in local extreme in the case of Σ17(410). Good candidate to solve 
this problem is parallel GA. Two parallel genetic algorithm schemes were tested: one 
hierarchic and one cyclic with central element. Each parallel scheme consists of 8 slightly 
modified GA described in previous section. Results are in table 3 referred as GA-par. Parallel 
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genetic algorithm improved Σ13(510) grain boundary energy and gave result closer to SA-
value. Furthermore, it led to big reduction of Σ17(410) grain boundary energy, which no SA 
nor simple GA could achieve. 

 
Tab. 3.  Comparison of grain boundary energies obtained by simulated annealing and 

genetic algorithm. Energy unit is Jm-2. 
Egb[Jm-2] SA (0K) SA (22K) GA MD [2] GA-par 
Σ5(210)  1.509 1.572 1.507 1.392 - 
Σ5(310) 1.046 1.115 1.045 0.985 - 
Σ17(410) 1.898 1.923 1.886 1.12 1.263 
Σ13(510) 1.12 1.16 1.9 1.843 1.441 

 
4. Discussion 

We verified that genetic algorithm is very effective tool for grain boundary structure 
optimization. Grain boundary structure optimization is problem with many degrees of 
freedom. There is a great possibility to get stuck in local extreme. Genetic algorithm is very 
flexible, consists of various set up parameters. On one hand, it is difficult to write algorithm 
suitable for concrete problem, on the other hand variability increases diversity and helps to 
overcome local extremes. Therefore is GA very good candidate for this optimization 
problem. We have compared genetic algorithm optimization with wide used simulated 
annealing optimization. Results show, that genetic algorithms are able to solve problem of 
grain boundaries structure optimization, moreover parallel genetic algorithms have high 
probability of overcoming local extremes leading to the lower energy structures.  
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