
DIFFUSION OF ACTIVE BROWNIAN PARTICLES 

Lukáš Glod1, Jana Tóthová2, Vladimír Lisý2

1 Department of Mathematics and Physics, Institute of Humanitarian and Technological 
Sciences, The University of Security Management, Kukučínova 17, 040 01 Košice, Slovakia,  

2Department of Physics, Faculty of Electrical Engineering and Informatics, Technical 
University of Košice, Park Komenského 2, 042 00 Košice, Slovakia 

E-mail: lukas.glod@gmail.com 

Received 19 April 2013; accepted 02 May 2013 

1. Introduction 
Active motion is one of the most fascinating aspects of biological systems. This 

motion can appear in many different biological contexts either inside cells or on the multi-
cellular level. Moreover, active motion may appear as a collective property of many 
organisms, as for example in the movement of whole flocks of animals [1]. 

Simple phenomenological models may help us to understand the dynamics of active 
entities, their statistical properties, and possibly how their dynamics and statistics are related 
to the biological task (for instance, transport of proteins for molecular motors or food search 
for the motion of animals). One class of models studied during the last 20 years are active 
Brownian particles. These models not only take into account random influences on the 
biological object from its surrounding, dissipation of the object´s energy, but also uptake of 
energy (negative dissipation). The latter is often realized by a friction coefficient which 
depends nonlinearly on particle´s speed and attains negative values for low speed.  

According to the classical theory the motion of a Brownian particle (BP) with the 
mass  and radius m R  in a fluid is described by the Langevin equation (LE) 

 ( )2m Dυ γυ ξ= − +& t , (1)
where x(t) and υ(t) = x&  are the particle position and velocity, respectively. The resistance 
force against the particle motion is the Stokes friction force proportional to the velocity, and 
the irregular impulses from the surrounding molecules are described by the (white) noise 
force ~ ξ(t) with the properties 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(t´)〉 = δ(t – t´). In Eq.(1), D = kBTγ is the 
noise intensity (k

B

BB is the Boltzmann constant, T is the temperature and γ = 6πRη is the friction 
coefficient proportional to the dynamic viscosity η of the surrounding fluid). The diffusion 
coefficient of the particle, which also determines the intensity of the noise generated by 
Eq.(1), is given by the Einstein formula D0 = γ-2D. 

In this paper we study a generalization of this theory to the case when the friction 
coefficient γ and the noise intensity are functions of velocity. We derive a general formula for 
the diffusion coefficient of BPs in equilibrium systems. This formula is then applied to three 
different friction functions, taken from current models of active Brownian motion. First, we 
replace γ with the friction function [2] 

 αγυυγ 2)( = , (2)
where α is a constant. Equation (1) can then be regarded as a generator of noise with very 
different properties from the white noise ξ(t). In such a generator, the diffusion coefficient 
Deff corresponds to the noise intensity of the velocity υ . It is of particular interest to know the 
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properties of this quantity and its dependence on the system parameters D, γ, and m [2]. Our 
second example is a nonlinearly increasing friction function discussed in Ref. [3], 

 )1()( 2βυγυγ += , (3)
where β > 0. This function can also be regarded as a Taylor expansion of a sufficiently 
smooth and symmetric friction function. Finally, in the simplified depot model proposed in 
[4] (the so-called SET model), the friction attains the form 

 ⎥⎦
⎤

⎢⎣
⎡

+
−= 21

1)(
υ
εγυγ ,     1<ε . (4)

This nonlinear friction gives rise to self-propelled motion if ε > 1 when γ(υ) has zeros at 
1−±= ευ  and is negative at speeds between and positive beyond these values. 

In the present contribution we consider equilibrium systems for which the fluctuation-
dissipation theorem must hold. Then the LE for the motion of BP should contain a stochastic 
(or “spurious”) force proportional to ∂υD(υ) [3]. As distinct from Ref. [2] where this force 
was not included in the LE, here we take it into account. 

 
2. The diffusion coefficient for active Brownian motion 

The diffusion coefficient (we keep for it the same notation Deff as in Ref. [2]) can be 
calculated from the mean square displacement of the particle as 

or, using the Green-Kubo relation, eff 0
d ( ) ( )D t tτ υ υ τ

∞
= ∫

 [ ]2
eff

1lim ( ) (0)
2t

D x t x
t→∞

= − , (5)

+ . Lindner´s theory [2] for the 

nonlinear BM incorporates the same random force as for the linear case. In the correct 
approach, when the friction force nonlinearly depends on the velocity υ , the random force 
for equilibrium systems should be changed: the intensity of the noise must also be 
the function of υ, as an implication of the fluctuation-dissipation theorem. Due to this fact we 
have to add a “stochastic” or the so called spurious force, proportional to the derivative of 

)(υD  [3] in the LE. Equation (1) then becomes 

where the properties of random function )(tξ  are defined as before. Equivalent to the LE (6) 
is the Fokker-Planck equation for the distribution function ),( tP υ  [5] 

 )()(2)()( 1 tDDamm ξυυυυγυ υ +∂−−= −& , (6)

 [ ] { }2 1 1( ) ( ) ( 1/ 2) ( )t P m D P m m a D Pυ υ υ υυ γ υ υ− − −⎡ ⎤∂ = ∂ ∂ + ∂ + + ∂⎣ ⎦υ . (7)

The equilibrium solution of Eq.(7) must have the form of the Maxwell-Boltzmann 
distribution. After substituting it into Eq.(7), the following fluctuation-dissipation relation for 
the case in question, 

 1 1( ) ( ) ( 1/ 2) ( )BD k T m a Dυυ γ υ υ υ− −⎡ ⎤= + + ∂⎣ ⎦ , (8)

must reduce to the generalized Einstein relation D(υ) = kBTγ(υ), and hence the coefficient  
in the equations of Langevin and Fokker-Planck must be 

B a
2/1−=a .  

Equation (8) can be established in different ways. Its most typical forms are: Ito´s [6], 
Stratonovich´s [7], and the kinetic´s form [3, 8], corresponding to a = 1/2, 0, and -1/2, 
respectively, and it is only in the last case that (8) coincides with the generalized Einstein 
relation [3]. 
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In the kinetic interpretation, the FPE has the stationary solution Pst(υ) = (m/2πkBT)
exp(-mυ /2k

B

1/2 

2
BBT) and the exact formula for the effective diffusion coefficient Deff for the 

natural boundary conditions (υmin = -∞, υmax = ∞) is given by the simple formula 
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where U(υ) = mυ2/2kBT. We have derived this equation using the formula DB eff = 〈υ 〉τ2
corr [2] 

and Eq. S9.14 from Ref. [5] for the correlation time τcorr of the function 〈υ(t)υ(0)〉. 
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π

−= −∫ υ , (9)

Using Eq.(9), the diffusion coefficient for the friction function (2) reads 

 
1

eff
( ) 1
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Bk T mD

α α

α
α

πγ

− ⎛ ⎞= Γ⎜ ⎟
⎝ ⎠

− ,    12 <α . (10)

This result coincides with the dimensional analysis. For all α < 1/2 the diffusion coefficient is 
inversely proportional to the friction factor γ. For α ≥ 1/2, Deff diverges. Note that Deff 
increases with the increase of the particle mass m if α > 0. For 1−=α  one has from (10) the 
simple relation Deff =(kBT) /mγ and for constant γ we return to the Einstein theory. B

2

As the next example, we consider the friction function (3). The analytical result for 
this friction is given by 

where erfc() is the complementary error function. 

 eff
1 exp erfc

2 2 2
B
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k T k T

π
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, (11)

Finally, for the SET friction (4) the diffusion coefficient from Eq.(9) has the form 

 eff
1 11 exp erfc

2 21
Bk TD

For such a system the diffusion coefficient does not depend on the mass m at all. In all the 
three cases, for normal BM (α = β = ε = 0) the Einstein formula Deff =kBT/γ is recovered. 

2
π ε ε

γ ε

⎡ ⎤⎛ ⎞− −⎛ ⎞= +⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟− ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

ε
. (12)

B

In Fig.1, we show the diffusion coefficient as a function of α, 〈υ2〉β, and ε, 
respectively, where 〈υ2〉 = kBT/m (equipartition theorem). B
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Fig.1:  Diffusion coefficient for friction laws (2), (3) and (4), respectively, normalized to the 
Einstein limit D0 = kBT/γ . The parameter 

Fig.1:  Diffusion coefficient for friction laws (2), (3) and (4), respectively, normalized to the 
Einstein limit D B

2
c0 = kBB

2
cT/γ . The parameter ω υ= /〈υ2〉, where υc = (γ0/γ)1/2α. 

 
3. Conclusion 

In conclusion, we have studied the Brownian motion of particles in situations when 
the friction force nonlinearly depends on the particle velocity. The correspponding stochastic 
equations of motion are hardly solvable analytically. However, for stationary processes it was 
possible to obtain an exact expression for the particle diffusion coefficient, which also 
determines the intensity of the noise generated by the Langevin equation. For particles in 
equilibrium with their surrounding we used the kinetic conception of stochastic integration. 
The derived general formula for the diffusion coefficient has been applied to different 
frictions. Our choices were inspired by some actual models of active Brownian motors [2-5]. 
The main attention was given to the friction force proportional to υ2αυ. So far such force was 
studied using the strong assumption that the random force driving the particles is delta 
correlated in the time and its intensity is constant. Our results for equilibrium systems, for 
which the intensity of the random force should depend on the velocity, are very different. We 
have found the diffusion coefficient Deff analytically and showed that it is finite only for α < 
1/2. For α = 0 the obtained Deff is the same as in the standard Einstein-Langevin theory. For 
all relevant α it is inversely proportional to the friction coefficient γ, but when α ≠ 0, Deff in a 
non-trivial way scales with the particle mass and the temperature. 
 
Acknowledgement 
This work was supported by the Agency for the Structural Funds of the EU within the 
projects 26220120021, 26220120033, 26110230061, and by the grant VEGA 1/0370/12. 
 
References: 
[1]  J. K. Parrish, W. M. Hamner: Animal Groups in Three Dimensions, Cambridge 

University Press, Cambridge United Kingdom (1997). 
[2]  B. Lindner: J. Stat. Phys., 130, 523 (2008). 
[3]  Yu. L. Klimontovich: Phys. Usp., 37, 737 (1994). 
[4]  F. Schweitzer, W. Ebeling, B. Tilch: Phys. Rev. Lett., 80, 5044 (1998). 
[5]  H. Risken, The Fokker-Planck Equation, 2nd edn., Springer, Berlin (1984). 
[6]  K. Ito: Proc. Imp. Acad., 20, 519 (1944). 
[7]  R. L. Stratonovich: Vestnik Moskov Univ. Ser. 1 Mat. Meh., 1, 3 (1964). 
[8]  P. Hänggi: Helv. Phys. Acta, 51, 183 (1978). 

 198


	DIFFUSION OF ACTIVE BROWNIAN PARTICLES
	Lukáš Glod1, Jana Tóthová2, Vladimír Lisý2
	1 Department of Mathematics and Physics, Institute of Humanitarian and Technological Sciences, The University of Security Management, Kukučínova 17, 040 01 Košice, Slovakia,  2Department of Physics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Park Komenského 2, 042 00 Košice, Slovakia



