GAMMA SPECTROSCOPIC ANALYSIS OF IRRADIATED Fe-Ni-Nb-B ALLOY

Matúš Stacho¹, Jozef Sitek¹, Róbert Hinca¹, Stanislav Sojak¹, Vladimir Slugeň¹

¹ Institute of Nuclear and Physical Engineering, Slovak University of Technology in Bratislava

E-mail: matus.stacho@stuba.sk

Received 13 May 2013; accepted 16 May 2013

1. Introduction

Influence of neutron radiation on amorphous and nanocrystalline $(Fe_{1-x} Ni_x)_{81} Nb_7 B_{12}$ (x = 0, 0.25, 0.5, 0.75) alloys were analyzed using several methods at our department. Samples were irradiated in TRIGA reactor in Vienna to fluence 10^{16} cm^{-2} and 10^{17} cm^{-2} . This paper is focused on gamma spectroscopic analyze of activation of those samples. Samples were analyzed one year after irradiation.

2. Method and measurement

Gamma ray spectra collection was realized using 30% HPGe detector placed in low background chamber. Analysis was made using Genie 2000 Spectroscopy software. Efficiency calibration for those measurements was calculated using LabSOCS software. Mathematical calibration does not take into account cascade peak summation effect, therefore was necessary include in to activity calculation a correction according to peak to total calibration [1].

3. Results and discussion

According to samples composition (Fe, Ni, Nb, B) were in results expected products of activation of those elements (58 Co, 60 Co, ...) and wasn't expected any significant difference between amorphous and nanocrystalline samples. Figure 1. shows the measured gamma ray spectra of nanocrystalline sample (Fe_{0.75} Ni_{0.25})₈₁ Nb₇ B₁₂ irradiated to fluence 10^{17} cm⁻².colected for 2 hours.

Fig.1: Gamma ray spectra sample (Fe_{0.75} Ni_{0.25})₈₁ Nb₇ B₁₂

In the spectra can be seen the peaks from ⁵⁸Co, ⁵⁴Mn, ⁶⁰Co, marked by arrows and the rest of significant peaks is corresponding to ¹⁸²Ta. Those four isotopes are the most significant activation products in all measured samples. Except those isotopes was also identified ⁵⁹Fe, ⁵⁷Co, ⁹⁴Nb in several samples, but the activities was below MDA.

Tables 1. – 4. shows calculated activity A [Bq] and its uncertainty u_A [Bq] of the most significant activation products for all samples.

Sample	Fe ₈₁ Nb ₇ B ₁₂		(Fe _{0.75} Ni _{0.25}) ₈₁ Nb ₇ B ₁₂		(Fe _{0.5} Ni _{0.5}) ₈₁ Nb ₇ B ₁₂		(Fe _{0.25} Ni _{0.75}) ₈₁ Nb ₇ B ₁₂	
Isotope	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]
⁵⁴ Mn	15.84	0.85	14.77	1.09	6.77	0.76	6.01	9.70E-01
⁵⁸ Co	-	-	288.16	16.78	346.75	18.83	873.83	4.17E+01
⁶⁰ Co	3.60	0.14	16.07	0.55	18.39	0.71	48.75	1.44E+00
¹⁸² Ta	220.99	4.21	171.66	4.04	95.46	2.73	201.51	4.98E+00

Tab. 1. Activity of main nuclides in amorphous samples irradiated to fluence 10^{16} cm⁻².

Tab. 2. Activity of main nuclides in nanocrystalline samples irradiated to fluence 10^{16} cm⁻².

Sample	$Fe_{81} Nb_7 B_{12}$		$(Fe_{0.75} Ni_{0.25})_{81} Nb_7 B_{12}$		$(Fe_{0.5} Ni_{0.5})_{81} Nb_7 B_{12}$		$(Fe_{0.25} Ni_{0.75})_{81} Nb_7 B_{12}$	
Isotope	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]
⁵⁴ Mn	15.73	0.84	11.03	0.80	6.74	0.39	3.53	5.92E-01
⁵⁸ Co	-	-	230.90	11.72	382.93	17.76	678.58	2.93E+01
⁶⁰ Co	4.72	0.16	11.87	0.39	20.05	0.60	34.43	1.01E+00
¹⁸² Ta	245.35	4.50	119.14	2.63	111.33	2.36	152.89	3.05E+00

Tab. 3. Activity of main nuclides in amorphous samples irradiated to fluence 10^{17} cm⁻².

Sample	$Fe_{81} Nb_7 B_{12}$		$(Fe_{0.75} Ni_{0.25})_{81} Nb_7 B_{12}$		$(Fe_{0.5} Ni_{0.5})_{81} Nb_7 B_{12}$		$(Fe_{0.25} Ni_{0.75})_{81} Nb_7 B_{12}$	
Isotope	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]
⁵⁴ Mn	133.46	8.58	155.49	10.60	49.97	5.32	54.40	4.63E+00
⁵⁸ Co	-	-	2811.69	156.61	2674.51	142.10	8028.01	3.32E+02
⁶⁰ Co	32.09	1.19	197.40	6.27	85.66	3.12	507.59	1.48E+01
¹⁸² Ta	2158.89	2.19E+02	2060.67	40.44	786.71	18.64	2129.46	3.51E+01

Tab. 4. Activity of main nuclides in nanocrystalline samples irradiated to fluence 10^{16} cm⁻².

Sample	$Fe_{81} Nb_7 B_{12}$		$(Fe_{0.75} Ni_{0.25})_{81} Nb_7 B_{12}$		(Fe _{0.5} Ni _{0.5}) ₈₁ Nb ₇ B ₁₂		$(Fe_{0.25} Ni_{0.75})_{81} Nb_7 B_{12}$	
Isotope	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]	A [Bq]	u _A [Bq]
⁵⁴ Mn	100.79	6.43	105.40	7.54	45.88	5.22	13.84	5.03E+00
⁵⁸ Co	-	-	1834.23	112.20	2676.04	136.41	3628.89	1.79E+02
⁶⁰ Co	24.09	1.03	131.13	4.13	151.61	4.57	237.82	7.03E+00
¹⁸² Ta	1556.17	31.69	1325.29	28.06	764.32	18.96	919.34	2.11E+01

The main difference between samples, except amorphous or nanocrystalline structure is in Fe to Ni ratio. Therefore was compared the activity of those elements according to this ratio. This comparison is showed at figure 2. - 5.

Fig.2: Activity of ⁵⁴Mn in samples irradiated to fluence 10¹⁶ cm⁻² on the left and 10¹⁷ cm⁻² on the right side.

First compared isotope is ⁵⁴Mn. It was most probably produced from ${}^{54}Fe(n,p){}^{54}Mn$ reaction. At figure 2can be seen the decrees of its activity with the decreasing percentage of iron in the sample.

Fig.3: Activity of ⁵⁸Co in samples irradiated to fluence 10¹⁶ cm⁻² on the left and 10¹⁷ cm⁻² on the right side.

Second isotope is ⁵⁸Co. It was most probably produced from ⁵⁸Ni(n,p)⁵⁸Co reaction. At figure 3 can be seen the increase of its activity with the increasing percentage of nickel in the sample and also absence of this isotope in samples without nickel.

Fig.4: Activity of ⁶⁰Co in samples irradiated to fluence 10¹⁶ cm⁻² on the left and 10¹⁷ cm⁻² on the right side.

Third compared isotope is ⁶⁰Co. It was produced from ⁵⁹Co(n,γ) ⁶⁰Co or ⁶⁰Ni(n,p) ⁶⁰Co reaction. ⁵⁹Co is a stable isotope of cobalt. In samples could be as an impurity, because it

often occurs in iron and nickel ore [2]. At figure 2. can be seen the increase of its activity with the increasing percentage of nickel in the sample, but some ⁶⁰Co was found also in sample without nickel.

Fig.5: Activity of ¹⁸²Ta in samples irradiated to fluence 10^{16} cm⁻² on the left and 10^{17} cm⁻² on the right side

The last compared isotope is ¹⁸²Ta. It was produced from ¹⁸¹Ta(n,γ) ¹⁸²Ta reaction. ¹⁸¹Ta is a stable isotope of tantalum and it occurs in Niobium ore. At figure 5. is not any obvious correlation between activity of ¹⁸²Ta and Fe to Ni ratio.

Systematic differences between activities in amorphous and nanocrystalline samples were not observed. Small difference could be explained by little differences in dimensions of samples. The calculated activities of samples irradiated to fluence 10^{17} cm⁻² was about an order of magnitude higher than the samples irradiated to fluence 10^{16} cm⁻².

4. Conclusion

In the measured spectra was identified the peaks from ⁵⁸Co, ⁵⁴Mn, ⁶⁰Co and ¹⁸²Ta. Those four isotopes are the most significant activation products in all measured samples. Increase of activity of ⁵⁸Co, ⁶⁰Co and decrees of its activity of ⁵⁴Mn with the increasing percentage of nickel in the sample was registered. Systematic differences between activities in amorphous and nanocrystalline samples were not observed.

Acknowledgement

This work was financially supported by grant of Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Slovak Academy of Sciences No. VEGA-1/0204/13.

References:

- [1] Canberra Industries: Model S574 LabSOCS Calibration Software, Meriden_USA.
- [2] D. A. Atwood: Radionuclides in the Environment, John Wiley & Sons Ltd, Lexington_USA (2010).