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1. Introduction

Basic understanding of DC currents through nanoscale molecular junctions or nano-
junctions (NJ) is provided by Landauer-Biittiker formalism [1]. A more general and very pow-
erful approach is offered by non-equilibrium Green’s functions formalism [2] which uses self-
energies to account for effects of conductors (leads) attached to the NJ. In these approaches,
a nanoscale system (which sets the bottom limit on the overall resistance) is described so that
most important physical effects including the quantum ones are included. It is important to re-
alise that the small system has open boundary conditions with electrons coming into and leaving
out from the NJ. Temporal domain —i.e. description of time-dependence of induced electric cur-
rent due to a general time-dependent bias and/or other perturbation — has been approached by
time-dependent density-functional theory (TDDFT) [3]. The open boundary conditions how-
ever place a significant complication which makes this approach difficult.

In this contribution we use our original approach [4, 5, 6] to time-dependent quantum
transport and demonstrate it on an atomistic model of quantum-interference effect transistor
(QulIET). Proposed devices of this kind have ring shape and nanoscale size and have been pro-
posed in Refs. [7, 8]. An atomistic ring structure — in simplest case a benzene molecule — is
embedded between the source and drain leads. The basic principle of operation of such ele-
ments is the quantum interference effect between electron amplitudes propagating in the two
ring branches. Nanoscale rings of this kind have been studied by several groups of authors in
stationary regimes. The most important outcome of these studies is determination of which ring
structures are insulating and which are conducting. Particularly simple and practical results
have been provided in Ref. [9]. The authors have shown that rings consisting from an even
number of atoms can be both conducting and insulating, depending on the mutual position of
source and drain attachment sites (vertices). Explicit results for multibranch devices have been
found in Ref. [10].

Major unique feature of our approach is its ability to perform explicit time-dependent
simulations of electron propagation through systems with open boundary conditions. This is
achieved by employment of stroboscopic wave packets [4, 5] which serve as an orthonormal
basis set in which electron wavefunctions can be expanded. The method treats electrons either
independently or it can include a mean-field interaction.

2. Studied model of the QulIET

Studied model of the QuIET and its attachment to an electric circuit are schematically
shown on Fig. 1. It is a semi-quantitative model in which the source and the drain leads are
assumed to consist of long conductive monoatomic wires. The central part is the ring. The ring
itself is also built from the conducting monoatomic wire. Since we do not have any specific
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Fig. 1: Schematic model of an atomistic ring structure in an electric circuit. In the upper part

there is the gate electrode. Indexing scheme of individual atoms is shown. N denotes the total

number of ring atoms and also the index of the atom next to the left (source) vertex site. n is

the index of the right (drain) vertex site. In actual simulations we use rings having N = 20

atoms. n in the simulations is either 10 (normally insulating configuration) or 11 (normally

conducting one). The arrows show the direction of the flow of electrons which is opposite to the
conventional direction of electric current.

reason to introduce unnecessary parameters into the studied model, we assume basic physical
parameters (specified below) of the ring atoms to be the same as those of atoms in the leads. The
atoms and their interactions are modelled by tight-binding (Hiickel) approximation with single
orbital per atom. Formal quantum-mechanical description is started defining the Hamiltonian
which is

~

H(t) _ ﬁperi + ]:Iring + Hbias + I:Igate(t) (1)
with 00 0
fyperi — I ala + > tp(al, a + afai) (2)
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being the periodic infinite chain (1-dimensional crystal or bulk) operator. Here ¢ is the bulk
on-site energy and ¢y is the tight-binding (TB) bulk hopping parameter which is assumed to be
negative and its magnitude will be used as the energy unit. Index [ runs over all lattice sites.
H™™e is a modification to the bulk Hamiltonian in order to include the ring system into the
model. It has only the following non-vanishing matrix elements in the atomic orbital basis:

ring . ring _
Hyny = Hypan = —ts

ring _ ring _

ring o ring -
Hn,N+1 - HN—}-Ln = 1B

HP=s describes effect of applied electric bias. Within the TB model it is simply a proper lifts of
the on-site energies. The right-hand-side (drain) lead has its potential set to zero. The left-hand-
side lead (source) has an electric bias U applied on. On the source side, the bias is represented by
the uniform lift eU of on-site energies of all the atoms in the source lead (e being the magnitude
of the electron charge). Impact of the bias on the ring requires special treatment. A fully
quantitative approach would necessitate a self-consistent determination of Y2 In our semi-
quantitative model we have lifted energies of the ring atoms by half of the bias value as can be
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seen from the following formula:

. eUdyp, 1<0 (in the left lead)
Hp® =14 3eU &y, 1<I<N (withinthering) . (4)
0, all other [, I'

Finally we have the contribution H gate(t) = e‘zg(t) which describes an effect of a gate potential
applied to the upper ring branch. As we wish to simulate an effect of a gate field switching on
and off, H gate(¢) is a time-dependent contribution. We could similarly use a time-dependent
HPs (which is not the case in the present work though).

Devices of the kind described above are expected not to remain theoretical concepts.
The basic building block — the ring — can be realized by employment of an aromatic molecule
like benzene. (The hydrogen atoms bound to carbons need not be considered in a simplified
theoretical description like that sketched above.) This would provide effectively a 6-atom ring.
Larger rings can be formed for example using conducting polymers [7]. The leads can be
attached via thiolate bonds (sulphur atoms). The gate potential is expected to be realized by an
approaching STM tip in close vicinity of the ring.

Quantum dynamics of electrons in the whole system is described by Schrodinger equa-
tion (SchE)

L0 A
it (1) = HOW() ®

using the independent-electron model. (A model mean field could also be used within out
method). Wavefunction ¢ (t) of each electron is expanded in the unitarily propagating stro-
boscopic basis set [5]. Having the wavefunction available (after the SchE is solved) we can
calculate electric current contribution of one electron. The total current is obtained by summing
up the contributions from all electrons in the system. For details see Ref. [6]. The current is a
spatially resolved. In stationary situations it would however loose its the spatial dependence far
in the leads.

3. Results

A complete simulation leading to results presented below consists of several stages.
(i) In the first stage we let evolve the system under the effect of a constant electric bias here
chosen U = 0.4 |tg|/e. During this time (500 7/|tg|) a quasistationary current is established
(Fig. 1). (i1) At time ?,, = 500 units we turn on the gate potential with the exponential time
dependence described below. (iii) At time ¢,¢ = 1000 units we turn off the gate potential, again
with an exponential temporal dependence. The overall time-dependence is described by

0, t <ton
‘/g(t) = % eis(titon)v ton S t S toff (6)
Vo [1 — e*s@*tm)} Lt > tog

where s is the gate switching speed. We use two finite values of s: 0.02 and 0.10 of |¢tg|/A. In
addition we simulate also an ideal rectangular gate switch on-off, which mathematically corre-
sponds to an infinite value of the speed s. As for the gate field amplitude, we use eV = 0.51 |tg]|
for the normally insulating (n = 10) ring and eV, = 0.62 |tg| for the normally conducting
(n = 11) ring. These value maximise the switching effect for given ring structure as obtained
from the stationary analysis using formulas derived in Ref. [10].
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Fig. 2: Electron currents through the two ring configurations response to gate operation. Elec-

tric bias is stationary and equal to U = 0.4 |tg|/e. In the left panel (n = 10) we use the ampli-

tude of the gate potential Vy = 0.51 |tg|/e. In the right panel (n = 11) we use Vi = 0.62 |tg]/e.
See text for more details.

As a main outcome from the simulations, we compute the electron current in the leads;
it is a spatially resolved current and it has positive sign defined by the flow of electrons (i.e.
not positive charge). It is computed from time-dependent wavefunctions of all electrons in the
system. Despite the spatial dependence, main features of the current do not depend dramatically
on chosen observation point, apart from a time delay due to finite propagation speed of electrons.
The results are presented on Fig. 2. The left panel shows currents for the ring with N = 20 sites
and the right lead attached to site n = 10. It is the case of normally insulating ring junction.
There is no electric current for times ¢ < t,,, i.e. at normal conditions (gate field off) which
is the result of destructive quantum interference between the electron amplitudes in the lower
and upper ring branches. As soon as the gate potential is turned on we observe the formation
of current through the device. Thanks to the interference as the principle of the operation, the
response to the applied gate field is very fast. In our simplified model the characteristic times are
on optical timescale. The limiting factor in real setups would be the speed of the gate switching
mechanism which can not be arbitrarily fast. The response of the device to the applied gate field
would not present a limiting factor to the device’s overall performance.

Because the interference pattern depends on the lengths of the interfering paths, the sit-
uation differs when we use different drain vertex (site) while keeping the source fixed. Attach-
ing the drain to site n = 11 makes the ring conducting under normal (non-gated) operation [9].
What is now the effect of the applied gate potential is shown on the right panel of Fig. 2. The
potential now has its maximum Vj = 0.62 |¢{g|/e. We see the operation of the n = 11 device is
quite complementary to the n = 10 ring.

The tiny rapid oscillations in the displayed plots result from the finite cutoff on the
number of basis set functions; we use 2820 wavepackets forming our basis set [6]. The plots
exhibit the oscillations even those have been in most part suppressed by a proper smoothing
procedure.

4. Conclusion
In this contribution we have presented simulations of electron current response to ap-
plied gate potentials in a ring-shaped quantum interference device which has been proposed in

331



works [7, 8]. Such device could function like a current-switching quantum-interference tran-
sistor. We demonstrated capability of our approach to describe this kind of system keeping full
quantum coherence in the description for extended periods of time. This have been achieved
thanks to the unique feature of our method which allows for explicit simulations of small quan-
tum subsystems with open boundary conditions. Further generalisation of the method is needed
to reduce the number of basis set functions required to describe the system.
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