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1. Introduction 
According to the classical theory the motion of a Brownian particle (BP) with the 

mass  and radius m R  in a fluid is described by the Langevin equations (LEs) (  is 
denoted by a dot) 

/d dt

 υ=x& ,     ( )2m Dυ γυ ξ= − +& t , (1)
where ( )tυ  is the particle velocity and ( )x t  is the particle position. The resistance force 
against the particle motion is the Stokes friction force proportional to the velocity, and the 
irregular impulses from the surrounding molecules are described by the (white) noise force 
~ )(tξ  with the properties 0)( =tξ  and ( )tttt ijji ′−=′ δδξξ )()( . In Eq.(1), γTkD B=  is 

the noise intensity (  is the Boltzmann constant, Bk T  is the temperature and ηπγ R6=  the 
friction coefficient proportional to the dynamic viscosity η  of the surrounding fluid). The 
effective diffusion coefficient of the particle, which also determines the intensity of the noise 
generated by Eq.(1), is given by the Einstein formula . DDeff

2−= γ
Various generalizations of Eq.(1) during the past 20 years were used to describe the 

motion of living objects – molecular motors, flocks of animals, etc. The simplest case for the 
friction force of the individual BP is Rayleigh-Helmholtz friction, , which is 
interesting because of the fact that at 

2
0

2)( υυυγ −=

0υυ <  the friction acts as an energy pump. Other 
models (not addressed here) that have attracted some attention were proposed by Schweitzer, 
Ebeling and Tilch [1], and by Schienbein and Gruler [2]. 

In this paper we will study the one-dimensional case when the friction coefficient γ  
and the noise intensity are functions of velocity. Our main focus is to derive the effective 
diffusion coefficient for the nonlinear Brownian motion (BM) with a general friction 
function. In this case the equation of motion for the BP should contain a stochastic (or 
“spurious”) force proportional to ( )Dυ υ∂  [3]. Whereas in [4] the exact expression for the 
diffusion coefficient of the nonlinear BM when the LE does not include the spurious force 
was derived, here we take this force into account. 

 
2. The diffusion coefficient for nonlinear Brownian motion 

In the work [5], the main attention was given to the effective diffusion coefficient of 
the particle . This coefficient can be calculated from the mean square displacement of the 
particle as 

effD
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or using the Kubo relation for the velocity autocorrelation function, 

 
0

1 ( ) ( )effD t t
d

dυ υ τ
∞

= +∫ τ . (3)

Here,  is the dimensionality of the system. The coefficient  is important not only for 
the description of various kinds of the active and nonlinear BM, e.g. in physics and biology 
[6 - 8], but also for designing colored-noise generators [5]. Indeed, while the random force 

d effD

)(tξ describes the white noise with equal amplitudes of any frequency component of the force 
spectrum, equation (1) with nonlinear frictions, e.g. , where αγυυγ 2)( = α  is a constant, can 
be regarded as a noise generator with very different properties. In such a generator, the 
diffusion coefficient  corresponds to the noise intensity of the “velocity” effD υ . It is of 
particular interest to know the properties of this quantity and its dependence on the system 
parameters , D γ , and m . 

Lindner´s theory [5] requires substantial improvements since for the nonlinear BM it 
incorporates the same random force as for the linear case. In the correct approach, when the 
friction force nonlinearly depends on the velocity υ , the random force should be changed: 
the intensity of the noise must also be the function of υ , )(υD , as an implication of the 
fluctuation-dissipation theorem. Due to this fact we have to add a “stochastic” or the so called 
spurious force, proportional to the derivative of )(υD  [3] in the LE. Equation (1) then 
becomes 

where the moments of random function )(tξ  are defined as before. Equivalent to the LE (4) 
is the Fokker-Planck equation (FPE) for the distribution function ),( tP υ  

 )()(2)()( 1 tDDamm ξυυυυγυ υ +∂−−= −& , (4)

The equilibrium solution of the FPE (5) must have the form of the Maxwell-
Boltzmann distribution. After substituting this distribution into Eq.(5) for the state of 
equilibrium, the following fluctuation-dissipation relation for the case in question, 

 [ ] [ ]{ }PDammPDmPt )()2/1()()( 112 υυυγυ υυυυ ∂++∂+∂∂=∂ −−− . (5)

 1 1( ) ( ) ( 1/ 2) ( )BD k T m a Dυυ γ υ υ υ− −⎡ ⎤= + + ∂⎣ ⎦ , (6)

must reduce to the generalized Einstein relation )()( υγυ TkD B= , and hence the coefficient 
 in the equations of Langevin and Fokker-Planck must be a 2/1−=a . 

Equation (5) can be established in different ways. Its most typical forms are: Ito´s [9, 
10], Stratonovich´s [11, 12], and the kinetic´s form [3, 13, 14], corresponding to a = 1/2, 0,      
-1/2, respectively, and it is only in the last case that (6) coincides with the generalized 
Einstein relation [3]. 

In the kinetic interpretation, the FPE has the stationary solution )(υstP  
. The normalization constant was determined from the 

normalization condition  for the natural boundary conditions (

)2/exp()2/( 22/1 TkmTkm BB υπ −=

1)(max

min

=∫
υ

υ
υυ dPst −∞=minυ , 

+∞=maxυ ). 
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Now, we obtain the general formula for the effective diffusion coefficient  for the 
one-variable case corresponding to the kinetic FPE (5). According to [8, 15], the diffusion 
coefficient is given by the simple formula 

effD

where [ ]∫
∞

Δ−+=
0

22 /)()( τυυτυυτ dttcorr  is the correlation time of the velocity and 
22 )( υυυ −=Δ  is its variance. On the other side, in the work [16] we can find the 

analytical expression for the correlation time (S9.14). Using this fact, we can obtain the exact 
formula for the effective diffusion coefficient  in the one-dimensional case ( ), effD 1=d

 correffD τυ 2Δ= , (7)

 [ ]
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1( ) exp ( )
2

B
eff

mk TD U
υ

υ

dγ υ υ
π

−= −∫
where . If the general friction function TkmU B2/)( 2υυ = )(υγ  is symmetric in υ , e.g. 
~ , and “well-behaved“, avoiding unphysical divergence of the velocity, in particular, the 
velocity can vary between two symmetric limiting values 

αυ 2

Mυ±  [4] and the formula (8) can 
be replaced by 

υ

)

, (8)

The result (8) is valid for the kinetic representation of the FPE, which corresponds to 
the LE (4) with the spurious force. It is easily verified from (8) that the diffusion coefficient 
is inversely proportional to the friction coefficient γ . For normal BM ( 0=α ) the Einstein 
formula  takes place. DDeff

2−= γ

 1

0

2 ( ) (eff B stD k T P dγ υ υ
∞

−= ∫ υ . (9)

The diffusion coefficient in our nontrivial example, which is a nonlinear function 
 discussed in [5], reads αγυυγ 2)( =

 ⎟
⎠
⎞
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2
1)(2 1 mTkD B

eff , (10)

if 12 <α . This result coincides with the result from dimensional analysis. For 1−=α  from 
(10) one recovers the simple relation . γmTkD Beff /22=
  
3. Conclusion 

In this contribution, we have studied the famous Langevin equation as a generator of 
the colored noise. We have described an example in which the Brownian particle produces a 
colored (correlated) noise. Instead of the Stokes friction, a force proportional to  is used; 
this choice is inspired by some actual models of Brownian motors [5]. The resulting 
Langevin equation is nonlinear and hardly solvable analytically. However, it was possible to 
obtain an exact expression for the effective diffusion coefficient. 

υυ α2

In Section 2, we have derived an analytical expression for the diffusion coefficient of 
a one-dimensional Brownian motion with nonlinear friction, taking into account the spurious 
force in the Langevin equation. This coefficient is inversely proportional to the friction factor 
γ . We have shown that the expected Einstein formula takes place only in the case when the 
friction force γυγ →)(  (normal Brownian motion). This expression exactly corresponds to 
the theory. Expression (8) can be also used to explore other issues. Currently, our attempts 
are oriented in this direction. 
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At present, the theory of the nonlinear Brownian motion is intensively developed. We 
believe that along with the remarkable improvements of the experimental possibilities and 
broadening of the observable time and space scales it will find more and more applications, 
particularly in the physics of colloidal suspensions and the science and technology of 
electrical engineering. 
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