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1. Introduction 
Solution of the thermal-electric problems is very important not only in the design of 

power lines and electric circuits but also in the analysis of the micro-electro-mechanical 
systems (MEMS), mechatronic-, and electronic devices. Several electric-thermal finite 
elements have been developed and implemented into commercial finite element codes, e.g. 
[1]. Using a very fine mesh of these elements allows also modeling and simulation of devices 
made of composites and functionally graded materials (FGMs) with inhomogeneous material 
properties. But preparing of the input data for analysis of these structures is very time 
consuming, and the results accuracy depends very strongly on the mesh fineness. 
Development of new finite elements for modeling and simulation of the electric-thermal 
problems made of FGM with spatial variation of material properties is straightforward. 

 
2. FEM equations of the electric – thermal link 
 The FEM equations of the homogenized (homogenization method is described in [2, 
3, 6] in detail) electric-thermal link with longitudinal variation of the effective electric and 
thermal conductance have been presented in [2]. After minimization of the potential energy 
functional [4], the FEM equations for electric conduction can be obtained 
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where  is the electric conductivity,  are the nodal electric potentials and 
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Electric potential at location x can be expressed as 
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The FEM equations for thermal conduction including the Joule heat and heat convection are 
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where  is the thermal conductivity,  are the nodal temperatures and 

are the nodal heat flows.  are the Joule heats obtained by transformation of generated 
heat to the nodal points. All these quantities are described in [6] in detail. 
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The transfer function of heat conduction ( )xb H
Lλ2

′  can be expressed analogically to (2). If the 

effect of distributed heat loads along the link element will be included, the resultant 
temperature at location x can be expressed as [3] 
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where  represents the temperature rise due to distributed Joule heat to location x 
(described in [6]) and  is its value for 

( )xT J
L

( )LT J
L Lx = .  

 Calculation of the secondary variables is described in [6] in detail. 
 

3. Numerical experiment 
A composite conductor joint has been considered as shown in Fig. 1. It consists of 

three parts – Link 1, Link 2 and Link 3. Their circular cross-section is constant with diameter 
d1 = d2 = d3 = 0.01 m. Lengths of parts are: L1 = 0.1 m, L2 = 0.07 m and L3= 0.05 m. Material 
of the links consists of two components: NiFe – matrix (denoted with index m); Tungsten – 
fibre (denoted with index f). 

 

 
 

Fig.1:  Composite conductor with spatial variation of material properties: 
geometry, constrains and loads 

 
Material properties of the components are constant and their values are: Tungsten 

(fibres) – thermal conductance fλ =160W/mK, electric conductance fγ = 2.84× 107 S/m; NiFe 
(matrix) – thermal conductance mλ = 100 W/mK, electric conductance mγ = 1.31× 107 S/m 
[5]. The fibre volume fraction at each link varies linearly and symmetrically according to 
rotational symmetry axis in the radial direction at node i (j) and continuously linear in the 
longitudinal direction to the constant value at node j (i).  

Link 1: node i (point 1) <0.0, 1.0>, node j (point 2) = 0.3. The value = 0.0 
is on the link longitudinal axis and =1.0 on the link surface. 

fiv ∈ fjv fjv

fjv
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Link 2: node i (point 2) = 0.3, node j (point 3) fiv fjv ∈<0.5, 1.0>. The value = 0.5 
is on the link longitudinal axis and =1.0 on the link surface. 

fjv

fjv
Link 3: node i (point 2) = 0.3, node j (point 4) fiv fjv ∈<0.5, 1.0>). The value = 1.0 

is on the link longitudinal axis and =0.5 on the link surface. 
fjv

fjv
The electric and thermal field variables have been found. Only three our link elements have 
been used for solution of the above described problem (one for each link). For comparison, 
the same problem has been solved with very fine mesh (4400 elements) of the LINK68 
elements using program ANSYS [1]. 
The effective longitudinal electric and thermal conductance of the layers for each bar can be 
calculated according to [6]. 

 
The applied constrains and loads are (Fig. 1): 

• electric current and potential: I1
 = 150 A, I4

 = -250 A, V3 = 100 V;  
• heat flow and temperature: P3 = 1.5 W, P4 = -2 W, T1 = 5 °C. 

 
The global FEM equations system (6) for electric conduction of this joint was obtained using 
the equations (3) for each link:  
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By solving the equations (6) the nodal electric variables have been obtained: V1 =100.0065 V; 
V2 = 99.9958 V; V4 = 99.9880 V; I3 = 100 A. 
The total FEM equations system (7) for thermal conduction has been obtained by the similar 
way as the equations (6).  
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Longitudinal distribution of the temperature (5) for n = 20 layers in each link is shown in  
Fig. 2. By solving these equations the nodal variables have been obtained: T2 = 33.54 °C;              
T3 = 44.95 °C; T4 = 28.45 °C; P1 = - 3.46 W. 
The results comparison of the nodal electric variables is shown in Table 1 and the nodal 
thermal variables in Table 2. 
 

Tab. 1. Comparison of the nodal electric variables. 
 

n V1 [V] V2 [V] V4 [V] I3 [A] 
20 100.00649 99.99586 99.98804 100 

ANSYS 100.00649 99.99586 99.98804 100 
 

Tab. 2.  Comparison of the nodal thermal variables. 
 

Tn T2 [°C] 3 [°C] T4 [°C] P1 [W] 
20 33.5397 44.9476 28.4468 -3.46409 

ANSYS 33.5388 44.9164 28.3929 -3.46369 
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Fig.2:  Longitudinal distribution of the temperature in the link 1, 2 and 3. 
 
4. Conclusion 

Comparison of the solution results for conductor joint obtained by only three our new 
FGM electro-thermal link finite elements (one for each link) with the very fine mesh of the 
solid finite elements shows very high effectiveness and accuracy (Fig. 2) of our solution 
method. Our new link element is very effective and accurate in analysis of electric circuits 
with long and thin conductors where using of the 2D or 3D finite elements would be much 
complicated and purposeless in the mesh fineness and input data preparing point of view. 
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